BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31221413)

  • 21. Modeling the effect of intratumoral heterogeneity of radiosensitivity on tumor response over the course of fractionated radiation therapy.
    Alfonso JCL; Berk L
    Radiat Oncol; 2019 May; 14(1):88. PubMed ID: 31146751
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inclusion of molecular biotherapies with radical radiotherapy: modeling of combined modality treatment schedules.
    Jones B; Dale RG
    Int J Radiat Oncol Biol Phys; 1999 Nov; 45(4):1025-34. PubMed ID: 10571212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Some characteristics of tumour control probability for heterogeneous tumours.
    Ebert MA; Hoban PW
    Phys Med Biol; 1996 Oct; 41(10):2125-33. PubMed ID: 8912385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of dose heterogeneity on tumour control probability in fractionated radiation therapy.
    Wiklund K; Toma-Dasu I; Lind BK
    Phys Med Biol; 2011 Dec; 56(23):7585-600. PubMed ID: 22086189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of radiotherapy treatment uncertainties on the delivered dose distribution and tumour control probability.
    Booth JT; Zavgorodni SF
    Australas Phys Eng Sci Med; 2001 Jun; 24(2):71-8. PubMed ID: 11560173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repopulation of interacting tumor cells during fractionated radiotherapy: stochastic modeling of the tumor control probability.
    Fakir H; Hlatky L; Li H; Sachs R
    Med Phys; 2013 Dec; 40(12):121716. PubMed ID: 24320502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linear quadratic and tumour control probability modelling in external beam radiotherapy.
    O'Rourke SF; McAneney H; Hillen T
    J Math Biol; 2009 Apr; 58(4-5):799-817. PubMed ID: 18825382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive value of modelled tumour control probability based on individual measurements of in vitro radiosensitivity and potential doubling time.
    Hedman M; Björk-Eriksson T; Brodin O; Toma-Dasu I
    Br J Radiol; 2013 May; 86(1025):20130015. PubMed ID: 23479396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fundamental form of a population TCP model in the limit of large heterogeneity.
    Carlone MC; Warkentin B; Stavrev P; Fallone BG
    Med Phys; 2006 Jun; 33(6):1634-42. PubMed ID: 16872071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data.
    Levegrün S; Jackson A; Zelefsky MJ; Skwarchuk MW; Venkatraman ES; Schlegel W; Fuks Z; Leibel SA; Ling CC
    Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):1064-80. PubMed ID: 11704332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of adaptive radiotherapy of bladder cancer by image-based tumour control probability modelling.
    Wright P; Muren LP; Høyer M; Malinen E
    Acta Oncol; 2010 Oct; 49(7):1045-51. PubMed ID: 20831494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective boosting of tumor subvolumes.
    Tomé WA; Fowler JF
    Int J Radiat Oncol Biol Phys; 2000 Sep; 48(2):593-9. PubMed ID: 10974480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Targeted radionuclide therapy: theoretical study of the relationship between tumour control probability and tumour radius for a 32P/33P radionuclide cocktail.
    Lechner A; Blaickner M; Gianolini S; Poljanc K; Aiginger H; Georg D
    Phys Med Biol; 2008 Apr; 53(7):1961-74. PubMed ID: 18354241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prostate implant evaluation using tumour control probability--the effect of input parameters.
    Haworth A; Ebert M; Waterhouse D; Joseph D; Duchesne G
    Phys Med Biol; 2004 Aug; 49(16):3649-64. PubMed ID: 15446795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of heterogeneity in radiosensitivity on LQ based isoeffect formalism for low alpha/beta cancers.
    Moiseenko V
    Acta Oncol; 2004; 43(5):499-502. PubMed ID: 15360056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An evaluation method of clinical impact with setup, range, and radiosensitivity uncertainties in fractionated carbon-ion therapy.
    Sakama M; Kanematsu N
    Phys Med Biol; 2018 Jun; 63(13):135003. PubMed ID: 29863484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumour control probability (TCP) for non-uniform activity distribution in radionuclide therapy.
    Uusijärvi H; Bernhardt P; Forssell-Aronsson E
    Phys Med Biol; 2008 Aug; 53(16):4369-81. PubMed ID: 18660558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of dose and sensitivity heterogeneity on TCP.
    Wiklund K; Toma-Dasu I; Lind BK
    Comput Math Methods Med; 2014; 2014():182935. PubMed ID: 24899915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies.
    van Leeuwen CM; Oei AL; Crezee J; Bel A; Franken NAP; Stalpers LJA; Kok HP
    Radiat Oncol; 2018 May; 13(1):96. PubMed ID: 29769103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TCP isoeffect analysis using a heterogeneous distribution of radiosensitivity.
    Carlone M; Wilkins D; Nyiri B; Raaphorst P
    Med Phys; 2004 May; 31(5):1176-82. PubMed ID: 15191307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.