These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31221415)
1. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Sakata D; Kyriakou I; Tran HN; Bordage MC; Rosenfeld A; Ivanchenko V; Incerti S; Emfietzoglou D; Guatelli S Phys Med; 2019 Jul; 63():98-104. PubMed ID: 31221415 [TBL] [Abstract][Full Text] [Related]
2. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes. Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model. Douglass M; Bezak E; Penfold S Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale gold nanoparticle (GNP)-laden tumor cell model and its use for estimation of intracellular dose from GNP-induced secondary electrons. Jayarathna S; Kaphle A; Krishnan S; Cho SH Med Phys; 2024 Sep; 51(9):6276-6291. PubMed ID: 38935922 [TBL] [Abstract][Full Text] [Related]
5. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles. Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737 [TBL] [Abstract][Full Text] [Related]
6. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Tran HN; Heuskin AC Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439 [TBL] [Abstract][Full Text] [Related]
7. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation. Liu R; Zhao T; Zhao X; Reynoso FJ Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039 [TBL] [Abstract][Full Text] [Related]
8. Backscattered electron emission after proton impact on gold nanoparticles with and without polymer shell coating. Hespeels F; Heuskin AC; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Lucas S Phys Med Biol; 2019 Jun; 64(12):125007. PubMed ID: 30986778 [TBL] [Abstract][Full Text] [Related]
9. Irradiation of gold nanoparticles by x-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electrons production. Leung MK; Chow JC; Chithrani BD; Lee MJ; Oms B; Jaffray DA Med Phys; 2011 Feb; 38(2):624-31. PubMed ID: 21452700 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams. Chow JC; Leung MK; Jaffray DA Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale dosimetry for a radioisotope-labeled metal nanoparticle using MCNP6.2 and Geant4. Kim T; Millares RH; Kim T; Eom M; Kim J; Ye SJ Med Phys; 2024 Sep; ():. PubMed ID: 39225623 [TBL] [Abstract][Full Text] [Related]
12. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models. Engels E; Bakr S; Bolst D; Sakata D; Li N; Lazarakis P; McMahon SJ; Ivanchenko V; Rosenfeld AB; Incerti S; Kyriakou I; Emfietzoglou D; Lerch MLF; Tehei M; Corde S; Guatelli S Phys Med Biol; 2020 Nov; 65(22):225017. PubMed ID: 32916674 [TBL] [Abstract][Full Text] [Related]
13. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale. Okada S; Murakami K; Incerti S; Amako K; Sasaki T Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679 [TBL] [Abstract][Full Text] [Related]
14. Estimation of microscopic dose enhancement factor around gold nanoparticles by Monte Carlo calculations. Jones BL; Krishnan S; Cho SH Med Phys; 2010 Jul; 37(7):3809-16. PubMed ID: 20831089 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric consequences of gold nanoparticle clustering during photon irradiation. Kirkby C; Koger B; Suchowerska N; McKenzie DR Med Phys; 2017 Dec; 44(12):6560-6569. PubMed ID: 28994464 [TBL] [Abstract][Full Text] [Related]
16. Secondary Electrons in Gold Nanoparticle Clusters and Their Role in Therapeutic Ratio: The Outcome of a Monte Carlo Simulation Study. Akhdar H; Alanazi R; Alanazi N; Alodhayb A Molecules; 2022 Aug; 27(16):. PubMed ID: 36014528 [TBL] [Abstract][Full Text] [Related]
17. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy I: Cellular dose enhancement in microscopic models. Martinov MP; Fletcher EM; Thomson RM Med Phys; 2023 Sep; 50(9):5853-5864. PubMed ID: 37211878 [TBL] [Abstract][Full Text] [Related]
18. Quantification of gold nanoparticle photon radiosensitization from direct and indirect effects using a complete human genome single cell model based on Geant4. Zhao X; Liu R; Zhao T; Reynoso FJ Med Phys; 2021 Dec; 48(12):8127-8139. PubMed ID: 34738643 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Martínez-Rovira I; Prezado Y Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760 [TBL] [Abstract][Full Text] [Related]
20. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA. Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]