These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31221415)
21. SU-E-T-10: Monte Carlo Study of the Dose Enhancement Factor (DEF) for Gold Nano-Particle (GNP) on the Cellular Level. Zhang M; Qin S; Haffty B; Yue N Med Phys; 2012 Jun; 39(6Part9):3704. PubMed ID: 28519059 [TBL] [Abstract][Full Text] [Related]
22. Influence of gold nanoparticles embedded in water on nanodosimetry for keV photon irradiation. Poignant F; Monini C; Testa É; Beuve M Med Phys; 2021 Apr; 48(4):1874-1883. PubMed ID: 33150620 [TBL] [Abstract][Full Text] [Related]
23. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Amato E; Italiano A; Leotta S; Pergolizzi S; Torrisi L J Xray Sci Technol; 2013; 21(2):237-47. PubMed ID: 23694913 [TBL] [Abstract][Full Text] [Related]
24. Comparing Geant4 physics models for proton-induced dose deposition and radiolysis enhancement from a gold nanoparticle. Rajabpour S; Saberi H; Rasouli J; Jabbari N Sci Rep; 2022 Feb; 12(1):1779. PubMed ID: 35110613 [TBL] [Abstract][Full Text] [Related]
25. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery? Heuskin AC; Gallez B; Feron O; Martinive P; Michiels C; Lucas S Med Phys; 2017 Aug; 44(8):4299-4312. PubMed ID: 28543610 [TBL] [Abstract][Full Text] [Related]
26. Influence of track structure and condensed history physics models of Geant4 to nanoscale electron transport in liquid water. Kyriakou I; Ivanchenko V; Sakata D; Bordage MC; Guatelli S; Incerti S; Emfietzoglou D Phys Med; 2019 Feb; 58():149-154. PubMed ID: 30642767 [TBL] [Abstract][Full Text] [Related]
27. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes. Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686 [TBL] [Abstract][Full Text] [Related]
28. A simulation study of gold nanoparticles localisation effects on radiation enhancement at the mitochondrion scale. Francis Z; Montarou G; Incerti S; Bernal M; Zein SA Phys Med; 2019 Nov; 67():148-154. PubMed ID: 31707141 [TBL] [Abstract][Full Text] [Related]
29. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement. Byrne HL; Gholami Y; Kuncic Z Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353 [TBL] [Abstract][Full Text] [Related]
30. Microdosimetric-Kinetic Model for Radio-enhancement of Gold Nanoparticles: Comparison with LEM. Kim H; Sung W; Ye SJ Radiat Res; 2021 Mar; 195(3):293-300. PubMed ID: 33400779 [TBL] [Abstract][Full Text] [Related]
31. Gold Nanoparticle Enhanced Proton Therapy: Monte Carlo Modeling of Reactive Species' Distributions Around a Gold Nanoparticle and the Effects of Nanoparticle Proximity and Clustering. Peukert D; Kempson I; Douglass M; Bezak E Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31480532 [TBL] [Abstract][Full Text] [Related]
32. Investigating the feasibility of TOPAS-nBio for Monte Carlo track structure simulations by adapting GEANT4-DNA examples application. Derksen L; Pfuhl T; Engenhart-Cabillic R; Zink K; Baumann KS Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34384060 [No Abstract] [Full Text] [Related]
33. A comparison between track-structure, condensed-history Monte Carlo simulations and MIRD cellular S-values. Tajik-Mansoury MA; Rajabi H; Mozdarani H Phys Med Biol; 2017 Mar; 62(5):N90-N106. PubMed ID: 28181480 [TBL] [Abstract][Full Text] [Related]
34. Local dose enhancement of proton therapy by ceramic oxide nanoparticles investigated with Geant4 simulations. McKinnon S; Guatelli S; Incerti S; Ivanchenko V; Konstantinov K; Corde S; Lerch M; Tehei M; Rosenfeld A Phys Med; 2016 Dec; 32(12):1584-1593. PubMed ID: 27916516 [TBL] [Abstract][Full Text] [Related]
35. Intercomparison of dose enhancement ratio and secondary electron spectra for gold nanoparticles irradiated by X-rays calculated using multiple Monte Carlo simulation codes. Li WB; Belchior A; Beuve M; Chen YZ; Di Maria S; Friedland W; Gervais B; Heide B; Hocine N; Ipatov A; Klapproth AP; Li CY; Li JL; Multhoff G; Poignant F; Qiu R; Rabus H; Rudek B; Schuemann J; Stangl S; Testa E; Villagrasa C; Xie WZ; Zhang YB Phys Med; 2020 Jan; 69():147-163. PubMed ID: 31918367 [TBL] [Abstract][Full Text] [Related]
36. Evaluation of dose point kernel rescaling methods for nanoscale dose estimation around gold nanoparticles using Geant4 Monte Carlo simulations. Jayarathna S; Manohar N; Ahmed MF; Krishnan S; Cho SH Sci Rep; 2019 Mar; 9(1):3583. PubMed ID: 30837578 [TBL] [Abstract][Full Text] [Related]
37. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Martinov MP; Thomson RM Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308 [TBL] [Abstract][Full Text] [Related]
38. Reproducibility study of Monte Carlo simulations for nanoparticle dose enhancement and biological modeling of cell survival curves. Velten C; Tomé WA Biomed Phys Eng Express; 2023 May; 9(4):. PubMed ID: 37137293 [TBL] [Abstract][Full Text] [Related]
39. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy II. Cellular dose enhancement within macroscopic tumor models. Martinov MP; Fletcher EM; Thomson RM Med Phys; 2023 Sep; 50(9):5842-5852. PubMed ID: 37246723 [TBL] [Abstract][Full Text] [Related]
40. Microdosimetric calculations of the direct DNA damage induced by low energy electrons using the Geant4-DNA Monte Carlo code. Margis S; Magouni M; Kyriakou I; Georgakilas AG; Incerti S; Emfietzoglou D Phys Med Biol; 2020 Feb; 65(4):045007. PubMed ID: 31935692 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]