BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31221429)

  • 1. Modeling of closed-loop recycling dual-mode counter-current chromatography based on non-ideal recycling model.
    Kostanyan AE; Galieva ZN
    J Chromatogr A; 2019 Oct; 1603():240-250. PubMed ID: 31221429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-loop recycling dual-mode counter-current chromatography. A theoretical study.
    Kostanyan AE; Belova VV
    J Chromatogr A; 2019 Mar; 1588():174-179. PubMed ID: 30642675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Closed-Loop Recycling Dual-Mode Counter-Current Chromatography with Specified Sample Loading Durations: Modeling of Preparative and Industrial-Scale Separations.
    Kostanyan AE; Voshkin AA
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous concentration and separation of target compounds from multicomponent mixtures by closed-loop recycling countercurrent chromatography.
    Kostanyan A; Martynova M; Erastov A; Belova V
    J Chromatogr A; 2018 Jul; 1560():26-34. PubMed ID: 29803428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of industrial scale closed-loop recycling counter-current chromatography separations.
    Kostanyan AE; Belova VV
    J Chromatogr A; 2020 Dec; 1633():461630. PubMed ID: 33128971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of preparative closed-loop recycling liquid-liquid chromatography with specified duration of sample loading.
    Kostanyan AE
    J Chromatogr A; 2016 Nov; 1471():94-101. PubMed ID: 27765425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of separation and concentration of solutes by closed-loop recycling liquid-liquid chromatography with multiple sample injection.
    Kostanyan AE
    J Chromatogr A; 2017 Jul; 1506():82-92. PubMed ID: 28554864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittent sample loading technique as a tool for obtaining high- concentration elution bands in recycling liquid-liquid chromatography: Theoretical study of periodic and semi-continuous separation processes.
    Kostanyan AE; Voshkin AA
    J Chromatogr A; 2022 Aug; 1676():463263. PubMed ID: 35752152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of two semi-continuous methods in liquid-liquid chromatography: Comparing conventional and closed-loop recycling modes.
    Kostanyan A; Martynova M
    J Chromatogr A; 2020 Mar; 1614():460735. PubMed ID: 31791591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of closed-loop recycling liquid-liquid chromatography: Analytical solutions and model analysis.
    Kostanyan AE
    J Chromatogr A; 2015 Aug; 1406():156-64. PubMed ID: 26116190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory.
    Kostanyan AE; Erastov AA
    J Chromatogr A; 2016 Sep; 1462():55-62. PubMed ID: 27492599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.
    Kostanyan AE
    J Chromatogr A; 2015 Dec; 1423():71-8. PubMed ID: 26518496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of analytical, preparative and industrial scale counter-current chromatography separations.
    Kostanyan AE; Voshkin AA
    J Chromatogr A; 2024 Jan; 1713():464534. PubMed ID: 38041973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparative separation and purification of Cyclosporin D from fungus Hypoxylon Spp. by improved closed-loop recycling counter-current chromatography.
    Li H; Zhang F; Jin Q; Zhu T
    J Chromatogr A; 2021 Jul; 1649():462221. PubMed ID: 34034103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online-storage recycling counter-current chromatography for preparative isolation of naphthaquinones from Arnebia euchroma (Royle) Johnst.
    He JM; Zhang SY; Mu Q
    J Chromatogr A; 2016 Sep; 1464():79-86. PubMed ID: 27554028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An easy-to-use calculating machine to simulate steady state and non-steady-state preparative separations by multiple dual mode counter-current chromatography with semi-continuous loading of feed mixtures.
    Kostanyan AE; Shishilov ON
    J Chromatogr A; 2018 Jun; 1552():92-98. PubMed ID: 29673766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal counter-current chromatography modelling based on counter-current distribution.
    de Folter J; Sutherland IA
    J Chromatogr A; 2009 May; 1216(19):4218-24. PubMed ID: 19070863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and highly efficient counter-current chromatography method for the isolation of concentrated fractions of compounds based on the sequential sample loading technique: Comparative theoretical study of conventional multiple and intermittent sample loading counter-current chromatography separations.
    Kostanyan AE
    J Chromatogr A; 2021 Jun; 1647():462163. PubMed ID: 33965681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical, Preparative, and Industrial-Scale Separation of Substances by Methods of Countercurrent Liquid-Liquid Chromatography.
    Kostanyan AA; Voshkin AA; Belova VV
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33353256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-channel recycling counter-current chromatography for natural product isolation: tanshinones as examples.
    Meng J; Yang Z; Liang J; Guo M; Wu S
    J Chromatogr A; 2014 Jan; 1327():27-38. PubMed ID: 24418233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.