These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

494 related articles for article (PubMed ID: 31221552)

  • 1. IFN-γ: A cytokine at the right time, is in the right place.
    Burke JD; Young HA
    Semin Immunol; 2019 Jun; 43():101280. PubMed ID: 31221552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD8
    Farhood B; Najafi M; Mortezaee K
    J Cell Physiol; 2019 Jun; 234(6):8509-8521. PubMed ID: 30520029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion.
    Castro F; Cardoso AP; Gonçalves RM; Serre K; Oliveira MJ
    Front Immunol; 2018; 9():847. PubMed ID: 29780381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of humanized tumor microenvironment mouse models based on the injection of peripheral blood mononuclear cells and IFN-γ to evaluate the efficacy of PD-L1/PD-1-targeted immunotherapy.
    Lin X; Zeng T; Lin J; Zhang Q; Cheng H; Fang S; Lin S; Chen Y; Xu Y; Lin J
    Cancer Biol Ther; 2020; 21(2):130-138. PubMed ID: 31690181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive biomarkers for PD-1 and PD-L1 immune checkpoint blockade therapy.
    Song Y; Li Z; Xue W; Zhang M
    Immunotherapy; 2019 Apr; 11(6):515-529. PubMed ID: 30860441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of tumor growth by IFN-gamma in cancer immunotherapy.
    Beatty GL; Paterson Y
    Immunol Res; 2001; 24(2):201-10. PubMed ID: 11594457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acidosis-mediated increase in IFN-γ-induced PD-L1 expression on cancer cells as an immune escape mechanism in solid tumors.
    Knopf P; Stowbur D; Hoffmann SHL; Hermann N; Maurer A; Bucher V; Poxleitner M; Tako B; Sonanini D; Krishnamachary B; Sinharay S; Fehrenbacher B; Gonzalez-Menendez I; Reckmann F; Bomze D; Flatz L; Kramer D; Schaller M; Forchhammer S; Bhujwalla ZM; Quintanilla-Martinez L; Schulze-Osthoff K; Pagel MD; Fransen MF; Röcken M; Martins AF; Pichler BJ; Ghoreschi K; Kneilling M
    Mol Cancer; 2023 Dec; 22(1):207. PubMed ID: 38102680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Regulation of Tregs in Cancer: Opportunities for Immunotherapy.
    Wang H; Franco F; Ho PC
    Trends Cancer; 2017 Aug; 3(8):583-592. PubMed ID: 28780935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade.
    Sato Y; Bolzenius JK; Eteleeb AM; Su X; Maher CA; Sehn JK; Arora VK
    JCI Insight; 2018 Dec; 3(23):. PubMed ID: 30518683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunotherapy and predictive immunologic profile: the tip of the iceberg.
    Cunha Pereira T; Rodrigues-Santos P; Almeida JS; Rêgo Salgueiro F; Monteiro AR; Macedo F; Soares RF; Domingues I; Jacinto P; Sousa G
    Med Oncol; 2021 Mar; 38(5):51. PubMed ID: 33788049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of IFN-γ and granzyme-B production by in "sitro" technology.
    Galassi C; Manic G; Musella M; Sistigu A; Vitale I
    Methods Enzymol; 2020; 631():391-414. PubMed ID: 31948559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IFN-α/β/IFN-γ/IL-15 pathways identify GBP1-expressing tumors with an immune-responsive phenotype.
    Wang L; Wei Y; Jin Z; Liu F; Li X; Zhang X; Bai X; Jia Q; Zhu B; Chu Q
    Clin Exp Med; 2024 May; 24(1):102. PubMed ID: 38758367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Checkpoint blockade-based immunotherapy in the context of tumor microenvironment: Opportunities and challenges.
    Duan J; Wang Y; Jiao S
    Cancer Med; 2018 Sep; 7(9):4517-4529. PubMed ID: 30088347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Levels of Interferon-gamma Release as a Biomarker for Non-small-cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors.
    Hirashima T; Kanai T; Suzuki H; Yoshida H; Matsushita A; Kawasumi H; Samejima Y; Noda Y; Nasu S; Tanaka A; Morishita N; Hashimoto S; Kawahara K; Tamura Y; Okamoto N; Tanaka T
    Anticancer Res; 2019 Nov; 39(11):6231-6240. PubMed ID: 31704852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of Quantitative Interferon-gamma Levels in Non-small-cell Lung Cancer Patients' Response to Immune Checkpoint Inhibitors.
    Kanai T; Suzuki H; Yoshida H; Matsushita A; Kawasumi H; Samejima Y; Noda Y; Nasu S; Tanaka A; Morishita N; Hashimoto S; Kawahara K; Tamura Y; Okamoto N; Tanaka T; Hirashima T
    Anticancer Res; 2020 May; 40(5):2787-2793. PubMed ID: 32366425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.
    Dai E; Zhu Z; Wahed S; Qu Z; Storkus WJ; Guo ZS
    Mol Cancer; 2021 Dec; 20(1):171. PubMed ID: 34930302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of ADAR1 in macrophages in combination with interferon gamma suppresses tumor growth by remodeling the tumor microenvironment.
    Lin W; Luo Y; Wu J; Zhang H; Jin G; Guo C; Zhou H; Liang H; Xu X
    J Immunother Cancer; 2023 Nov; 11(11):. PubMed ID: 37935565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune checkpoint inhibitors: recent progress and potential biomarkers.
    Darvin P; Toor SM; Sasidharan Nair V; Elkord E
    Exp Mol Med; 2018 Dec; 50(12):1-11. PubMed ID: 30546008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies.
    Patel SA; Minn AJ
    Immunity; 2018 Mar; 48(3):417-433. PubMed ID: 29562193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.