BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31221609)

  • 1. Expanding chemogenomic space using chemoproteomics.
    Jones LH
    Bioorg Med Chem; 2019 Aug; 27(15):3451-3453. PubMed ID: 31221609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical Proteomics for Expanding the Druggability of Human Disease.
    Zhang X
    Chembiochem; 2020 Dec; 21(23):3319-3320. PubMed ID: 32964553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Design, synthesis, and strategic use of small chemical probes toward identification of novel targets for drug development'.
    Castaldi MP; Hendricks JA; Zhang AX
    Curr Opin Chem Biol; 2020 Jun; 56():91-97. PubMed ID: 32375076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoproteomic-enabled phenotypic screening.
    Conway LP; Li W; Parker CG
    Cell Chem Biol; 2021 Mar; 28(3):371-393. PubMed ID: 33577749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical proteomics to identify molecular targets of small compounds.
    Sun B; He QY
    Curr Mol Med; 2013 Aug; 13(7):1175-91. PubMed ID: 23826922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.
    Galdeano C; Ciulli A
    Future Med Chem; 2016 Sep; 8(13):1655-80. PubMed ID: 27193077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoproteomics and Chemical Probes for Target Discovery.
    Drewes G; Knapp S
    Trends Biotechnol; 2018 Dec; 36(12):1275-1286. PubMed ID: 30017093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: Transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray.
    Gagna CE; Lambert WC
    Med Hypotheses; 2006; 67(5):1099-114. PubMed ID: 16828979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemogenomics and biotechnology.
    Wuster A; Madan Babu M
    Trends Biotechnol; 2008 May; 26(5):252-8. PubMed ID: 18346803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells.
    Offensperger F; Tin G; Duran-Frigola M; Hahn E; Dobner S; Ende CWA; Strohbach JW; Rukavina A; Brennsteiner V; Ogilvie K; Marella N; Kladnik K; Ciuffa R; Majmudar JD; Field SD; Bensimon A; Ferrari L; Ferrada E; Ng A; Zhang Z; Degliesposti G; Boeszoermenyi A; Martens S; Stanton R; Müller AC; Hannich JT; Hepworth D; Superti-Furga G; Kubicek S; Schenone M; Winter GE
    Science; 2024 Apr; 384(6694):eadk5864. PubMed ID: 38662832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of Modulators of Adipocyte Physiology Using Fully Functionalized Fragments.
    Galmozzi A; Parker CG; Kok BP; Cravatt BF; Saez E
    Methods Mol Biol; 2018; 1787():115-127. PubMed ID: 29736714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of DNA-encoded small molecule libraries against unmodified and non-immobilized protein targets.
    Zhao P; Chen Z; Li Y; Sun D; Gao Y; Huang Y; Li X
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10056-9. PubMed ID: 25044298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Driven Exploration of Selectivity and Off-Target Activities of Designated Chemical Probes.
    Miljković F; Bajorath J
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30249057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHIPMUNK: A Virtual Synthesizable Small-Molecule Library for Medicinal Chemistry, Exploitable for Protein-Protein Interaction Modulators.
    Humbeck L; Weigang S; Schäfer T; Mutzel P; Koch O
    ChemMedChem; 2018 Mar; 13(6):532-539. PubMed ID: 29392860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical proteomics and its impact on the drug discovery process.
    Miao Q; Zhang CC; Kast J
    Expert Rev Proteomics; 2012 Jun; 9(3):281-91. PubMed ID: 22809207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry for fragment screening.
    Chan DS; Whitehouse AJ; Coyne AG; Abell C
    Essays Biochem; 2017 Nov; 61(5):465-473. PubMed ID: 28986384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of chemogenomic library screening in drug discovery.
    Jones LH; Bunnage ME
    Nat Rev Drug Discov; 2017 Apr; 16(4):285-296. PubMed ID: 28104905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expanding reaction toolkit for DNA-encoded libraries.
    Fair RJ; Walsh RT; Hupp CD
    Bioorg Med Chem Lett; 2021 Nov; 51():128339. PubMed ID: 34478840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How chemoproteomics can enable drug discovery and development.
    Moellering RE; Cravatt BF
    Chem Biol; 2012 Jan; 19(1):11-22. PubMed ID: 22284350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.