BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 31221760)

  • 1. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers.
    Ryu JY; Kim HU; Lee SY
    Proc Natl Acad Sci U S A; 2019 Jul; 116(28):13996-14001. PubMed ID: 31221760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting enzymatic function of protein sequences with attention.
    Buton N; Coste F; Le Cunff Y
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37874958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme function prediction using contrastive learning.
    Yu T; Cui H; Li JC; Luo Y; Jiang G; Zhao H
    Science; 2023 Mar; 379(6639):1358-1363. PubMed ID: 36996195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13.
    Kandathil SM; Greener JG; Jones DT
    Proteins; 2019 Dec; 87(12):1092-1099. PubMed ID: 31298436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ProteInfer, deep neural networks for protein functional inference.
    Sanderson T; Bileschi ML; Belanger D; Colwell LJ
    Elife; 2023 Feb; 12():. PubMed ID: 36847334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepFunc: A Deep Learning Framework for Accurate Prediction of Protein Functions from Protein Sequences and Interactions.
    Zhang F; Song H; Zeng M; Li Y; Kurgan L; Li M
    Proteomics; 2019 Jun; 19(12):e1900019. PubMed ID: 30941889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature.
    Dalkiran A; Rifaioglu AS; Martin MJ; Cetin-Atalay R; Atalay V; Doğan T
    BMC Bioinformatics; 2018 Sep; 19(1):334. PubMed ID: 30241466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration and Evaluation of Machine Learning-Based Models for Predicting Enzymatic Reactions.
    Watanabe N; Murata M; Ogawa T; Vavricka CJ; Kondo A; Ogino C; Araki M
    J Chem Inf Model; 2020 Mar; 60(3):1833-1843. PubMed ID: 32053362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEEPre: sequence-based enzyme EC number prediction by deep learning.
    Li Y; Wang S; Umarov R; Xie B; Fan M; Li L; Gao X
    Bioinformatics; 2018 Mar; 34(5):760-769. PubMed ID: 29069344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Sequence Features on Machine-Learned Enzyme Classification Fidelity.
    Ferdous S; Shihab IF; Reuel NF
    Biochem Eng J; 2022 Nov; 187():. PubMed ID: 37215687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpliceRover: interpretable convolutional neural networks for improved splice site prediction.
    Zuallaert J; Godin F; Kim M; Soete A; Saeys Y; De Neve W
    Bioinformatics; 2018 Dec; 34(24):4180-4188. PubMed ID: 29931149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe.
    Wang T; Mori H; Zhang C; Kurokawa K; Xing XH; Yamada T
    BMC Bioinformatics; 2015 Mar; 16():96. PubMed ID: 25888481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of deep learning methods for blind protein contact prediction in CASP12.
    Wang S; Sun S; Xu J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):67-77. PubMed ID: 28845538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Survey for Predicting Enzyme Family Classes Using Machine Learning Methods.
    Tan JX; Lv H; Wang F; Dao FY; Chen W; Ding H
    Curr Drug Targets; 2019; 20(5):540-550. PubMed ID: 30277150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme Commission Number Prediction and Benchmarking with Hierarchical Dual-core Multitask Learning Framework.
    Shi Z; Deng R; Yuan Q; Mao Z; Wang R; Li H; Liao X; Ma H
    Research (Wash D C); 2023; 6():0153. PubMed ID: 37275124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein contact prediction by integrating deep multiple sequence alignments, coevolution and machine learning.
    Adhikari B; Hou J; Cheng J
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):84-96. PubMed ID: 29047157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.