These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 31221802)

  • 1. Navigating the Depths and Avoiding the Shallows of Pancreatic Islet Cell Transcriptomes.
    Mawla AM; Huising MO
    Diabetes; 2019 Jul; 68(7):1380-1393. PubMed ID: 31221802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries.
    Riemondy KA; Ransom M; Alderman C; Gillen AE; Fu R; Finlay-Schultz J; Kirkpatrick GD; Di Paola J; Kabos P; Sartorius CA; Hesselberth JR
    Nucleic Acids Res; 2019 Feb; 47(4):e20. PubMed ID: 30496484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single Molecule-Based fliFISH Validates Radial and Heterogeneous Gene Expression Patterns in Pancreatic Islet β-Cells.
    Li F; Hu D; Dieter C; Ansong C; Sussel L; Orr G
    Diabetes; 2021 May; 70(5):1117-1122. PubMed ID: 33685924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-nucleus RNA sequencing of human pancreatic islets identifies novel gene sets and distinguishes β-cell subpopulations with dynamic transcriptome profiles.
    Kang RB; Li Y; Rosselot C; Zhang T; Siddiq M; Rajbhandari P; Stewart AF; Scott DK; Garcia-Ocana A; Lu G
    Genome Med; 2023 May; 15(1):30. PubMed ID: 37127706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes.
    Xin Y; Kim J; Okamoto H; Ni M; Wei Y; Adler C; Murphy AJ; Yancopoulos GD; Lin C; Gromada J
    Cell Metab; 2016 Oct; 24(4):608-615. PubMed ID: 27667665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Technical and Biological Variability in Single-Cell RNA Sequencing.
    Kim B; Lee E; Kim JK
    Methods Mol Biol; 2019; 1935():25-43. PubMed ID: 30758818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell transcriptomes reveal characteristic features of human pancreatic islet cell types.
    Li J; Klughammer J; Farlik M; Penz T; Spittler A; Barbieux C; Berishvili E; Bock C; Kubicek S
    EMBO Rep; 2016 Feb; 17(2):178-87. PubMed ID: 26691212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparing Highly Viable Single-Cell Suspensions from Mouse Pancreatic Islets for Single-Cell RNA Sequencing.
    Lee H; Engin F
    STAR Protoc; 2020 Dec; 1(3):100144. PubMed ID: 33377038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis.
    Wu H; Kirita Y; Donnelly EL; Humphreys BD
    J Am Soc Nephrol; 2019 Jan; 30(1):23-32. PubMed ID: 30510133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective detection of variation in single-cell transcriptomes using MATQ-seq.
    Sheng K; Cao W; Niu Y; Deng Q; Zong C
    Nat Methods; 2017 Mar; 14(3):267-270. PubMed ID: 28092691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. bigSCale: an analytical framework for big-scale single-cell data.
    Iacono G; Mereu E; Guillaumet-Adkins A; Corominas R; Cuscó I; Rodríguez-Esteban G; Gut M; Pérez-Jurado LA; Gut I; Heyn H
    Genome Res; 2018 Jun; 28(6):878-890. PubMed ID: 29724792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revolutionizing immunology with single-cell RNA sequencing.
    Chen H; Ye F; Guo G
    Cell Mol Immunol; 2019 Mar; 16(3):242-249. PubMed ID: 30796351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating single-cell transcriptomic data across different conditions, technologies, and species.
    Butler A; Hoffman P; Smibert P; Papalexi E; Satija R
    Nat Biotechnol; 2018 Jun; 36(5):411-420. PubMed ID: 29608179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the heterogeneity of CD4
    Morgan DM; Shreffler WG; Love JC
    J Allergy Clin Immunol; 2022 Oct; 150(4):748-755. PubMed ID: 36205449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Androgen receptor-deficient islet β-cells exhibit alteration in genetic markers of insulin secretion and inflammation. A transcriptome analysis in the male mouse.
    Xu W; Niu T; Xu B; Navarro G; Schipma MJ; Mauvais-Jarvis F
    J Diabetes Complications; 2017 May; 31(5):787-795. PubMed ID: 28343791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using BRIE to Detect and Analyze Splicing Isoforms in scRNA-Seq Data.
    Huang Y; Sanguinetti G
    Methods Mol Biol; 2019; 1935():175-185. PubMed ID: 30758827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bias, robustness and scalability in single-cell differential expression analysis.
    Soneson C; Robinson MD
    Nat Methods; 2018 Apr; 15(4):255-261. PubMed ID: 29481549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.