These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31221854)

  • 1. Quantum amplification of mechanical oscillator motion.
    Burd SC; Srinivas R; Bollinger JJ; Wilson AC; Wineland DJ; Leibfried D; Slichter DH; Allcock DTC
    Science; 2019 Jun; 364(6446):1163-1165. PubMed ID: 31221854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Motion beyond the Quantum Limit by Transient Amplification.
    Delaney RD; Reed AP; Andrews RW; Lehnert KW
    Phys Rev Lett; 2019 Nov; 123(18):183603. PubMed ID: 31763905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid Quantum Squeezing by Jumping the Harmonic Oscillator Frequency.
    Xin M; Leong WS; Chen Z; Wang Y; Lan SY
    Phys Rev Lett; 2021 Oct; 127(18):183602. PubMed ID: 34767425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser cooling of a nanomechanical oscillator into its quantum ground state.
    Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O
    Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy.
    Qiu L; Shomroni I; Seidler P; Kippenberg TJ
    Phys Rev Lett; 2020 May; 124(17):173601. PubMed ID: 32412282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-enhanced sensing of a single-ion mechanical oscillator.
    McCormick KC; Keller J; Burd SC; Wineland DJ; Wilson AC; Leibfried D
    Nature; 2019 Aug; 572(7767):86-90. PubMed ID: 31332388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplitude Sensing below the Zero-Point Fluctuations with a Two-Dimensional Trapped-Ion Mechanical Oscillator.
    Gilmore KA; Bohnet JG; Sawyer BC; Britton JW; Bollinger JJ
    Phys Rev Lett; 2017 Jun; 118(26):263602. PubMed ID: 28707910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical squeezing via parametric amplification and weak measurement.
    Szorkovszky A; Doherty AC; Harris GI; Bowen WP
    Phys Rev Lett; 2011 Nov; 107(21):213603. PubMed ID: 22181880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanometre-scale displacement sensing using a single electron transistor.
    Knobel RG; Cleland AN
    Nature; 2003 Jul; 424(6946):291-3. PubMed ID: 12867975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant-Opto-Thermomechanical Oscillator (ROTMO): A Low-Power, Large Displacement, High-Frequency Optically Driven Microactuator.
    Pevec S; Donlagic D
    Small; 2022 Sep; 18(35):e2107552. PubMed ID: 35869621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-motion entanglement and state diagnosis with squeezed oscillator wavepackets.
    Lo HY; Kienzler D; de Clercq L; Marinelli M; Negnevitsky V; Keitch BC; Home JP
    Nature; 2015 May; 521(7552):336-9. PubMed ID: 25993964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
    Wollman EE; Lei CU; Weinstein AJ; Suh J; Kronwald A; Marquardt F; Clerk AA; Schwab KC
    Science; 2015 Aug; 349(6251):952-5. PubMed ID: 26315431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring.
    Pontin A; Bonaldi M; Borrielli A; Cataliotti FS; Marino F; Prodi GA; Serra E; Marin F
    Phys Rev Lett; 2014 Jan; 112(2):023601. PubMed ID: 24484010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong thermomechanical squeezing via weak measurement.
    Szorkovszky A; Brawley GA; Doherty AC; Bowen WP
    Phys Rev Lett; 2013 May; 110(18):184301. PubMed ID: 23683200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing Hidden Quantum Correlations in an Electromechanical Measurement.
    Ockeloen-Korppi CF; Damskägg E; Paraoanu GS; Massel F; Sillanpää MA
    Phys Rev Lett; 2018 Dec; 121(24):243601. PubMed ID: 30608715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical motion measured with an imprecision below that at the standard quantum limit.
    Teufel JD; Donner T; Castellanos-Beltran MA; Harlow JW; Lehnert KW
    Nat Nanotechnol; 2009 Dec; 4(12):820-3. PubMed ID: 19893515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-enhanced sensing of displacements and electric fields with two-dimensional trapped-ion crystals.
    Gilmore KA; Affolter M; Lewis-Swan RJ; Barberena D; Jordan E; Rey AM; Bollinger JJ
    Science; 2021 Aug; 373(6555):673-678. PubMed ID: 34353950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-coherent sensing of the center-of-mass motion of trapped-ion crystals.
    Affolter M; Gilmore KA; Jordan JE; Bollinger JJ
    Phys Rev A (Coll Park); 2020 Nov; 102(5):. PubMed ID: 35005329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.
    Buchmann LF; Schreppler S; Kohler J; Spethmann N; Stamper-Kurn DM
    Phys Rev Lett; 2016 Jul; 117(3):030801. PubMed ID: 27472106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object.
    Lecocq F; Clark JB; Simmonds RW; Aumentado J; Teufel JD
    Phys Rev X; 2015; 5(4):041037. PubMed ID: 27057422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.