These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31222384)

  • 1. Conversion of phenylglycinonitrile by recombinant Escherichia coli cells synthesizing variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Eppinger E; Stolz A
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6737-6746. PubMed ID: 31222384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides.
    Sosedov O; Baum S; Bürger S; Matzer K; Kiziak C; Stolz A
    Appl Environ Microbiol; 2010 Jun; 76(11):3668-74. PubMed ID: 20382812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis.
    Sosedov O; Stolz A
    Appl Microbiol Biotechnol; 2015 Mar; 99(6):2623-35. PubMed ID: 25248440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of (R)-mandelic acid and (R)-mandelic acid amide by recombinant E. coli strains expressing a (R)-specific oxynitrilase and an arylacetonitrilase.
    Müller E; Sosedov O; Gröning JAD; Stolz A
    Biotechnol Lett; 2021 Jan; 43(1):287-296. PubMed ID: 32936375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the Arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Kiziak C; Stolz A
    Appl Environ Microbiol; 2009 Sep; 75(17):5592-9. PubMed ID: 19581475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, overexpression, and characterization of a high enantioselective nitrilase from Sphingomonas wittichii RW1 for asymmetric synthesis of (R)-phenylglycine.
    Qiu J; Su EZ; Wang HL; Cai WW; Wang W; Wei DZ
    Appl Biochem Biotechnol; 2014 May; 173(2):365-77. PubMed ID: 24664232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of sterically demanding α,α-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Baum S; Williamson DS; Sewell T; Stolz A
    Appl Environ Microbiol; 2012 Jan; 78(1):48-57. PubMed ID: 22020513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile.
    Sosedov O; Stolz A
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1595-607. PubMed ID: 23695777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme.
    Kiziak C; Conradt D; Stolz A; Mattes R; Klein J
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3639-3648. PubMed ID: 16272385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous expression of an arylacetonitrilase from Pseudomonas fluorescens and a (S)-oxynitrilase from Manihot esculenta in Pichia pastoris for the synthesis of (S)-mandelic acid.
    Rustler S; Motejadded H; Altenbuchner J; Stolz A
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):87-97. PubMed ID: 18523765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Brunner S; Eppinger E; Fischer S; Gröning J; Stolz A
    World J Microbiol Biotechnol; 2018 Jun; 34(7):91. PubMed ID: 29896645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from
    Stolz A; Eppinger E; Sosedov O; Kiziak C
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31766372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Kiziak C; Klein J; Stolz A
    Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrilase-catalyzed conversion of (R,S)-mandelonitrile by immobilized recombinant Escherichia coli cells harboring nitrilase.
    Zhang XH; Liu ZQ; Xue YP; Xu M; Zheng YG
    Biotechnol Appl Biochem; 2016 Jul; 63(4):479-89. PubMed ID: 26014754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles.
    Veselá AB; Rucká L; Kaplan O; Pelantová H; Nešvera J; Pátek M; Martínková L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2193-202. PubMed ID: 26521240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, characterization of a novel nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward mandelonitrile present in active inclusion bodies.
    Sun H; Gao W; Wang H; Wei D
    Biotechnol Lett; 2016 Mar; 38(3):455-61. PubMed ID: 26564406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of aliphatic 2-acetoxynitriles by nitrile-hydrolysing bacteria.
    Heinemann U; Kiziak C; Zibek S; Layh N; Schmidt M; Griengl H; Stolz A
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):274-81. PubMed ID: 12845494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective nitrilase from Pseudomonas putida: cloning, heterologous expression, and bioreactor studies.
    Banerjee A; Dubey S; Kaul P; Barse B; Piotrowski M; Banerjee UC
    Mol Biotechnol; 2009 Jan; 41(1):35-41. PubMed ID: 18704770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly regio- and enantioselective synthesis of chiral intermediate for pregabalin using one-pot bienzymatic cascade of nitrilase and amidase.
    Zhang Q; Wu ZM; Hao CL; Tang XL; Zheng RC; Zheng YG
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5617-5626. PubMed ID: 31104100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From sequence to function: a new workflow for nitrilase identification.
    Egelkamp R; Friedrich I; Hertel R; Daniel R
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4957-4970. PubMed ID: 32291488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.