These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31222506)

  • 1. Predicting the bioactive conformations of macrocycles: a molecular dynamics-based docking procedure with DynaDock.
    Ugur I; Schroft M; Marion A; Glaser M; Antes I
    J Mol Model; 2019 Jun; 25(7):197. PubMed ID: 31222506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting bioactive conformations and binding modes of macrocycles.
    Anighoro A; de la Vega de León A; Bajorath J
    J Comput Aided Mol Des; 2016 Oct; 30(10):841-849. PubMed ID: 27655412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Docking of Macrocycles in Bound and Unbound Protein Structures with DynaDock.
    Meixner M; Zachmann M; Metzler S; Scheerer J; Zacharias M; Antes I
    J Chem Inf Model; 2022 Jul; 62(14):3426-3441. PubMed ID: 35796228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking of Macrocycles: Comparing Rigid and Flexible Docking in Glide.
    Alogheli H; Olanders G; Schaal W; Brandt P; Karlén A
    J Chem Inf Model; 2017 Feb; 57(2):190-202. PubMed ID: 28079375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the binding mode of macrocycles: Docking and conformational sampling.
    Martin SJ; Chen IJ; Chan AWE; Foloppe N
    Bioorg Med Chem; 2020 Jan; 28(1):115143. PubMed ID: 31771798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4.
    Kotelnikov S; Alekseenko A; Liu C; Ignatov M; Padhorny D; Brini E; Lukin M; Coutsias E; Dill KA; Kozakov D
    J Comput Aided Mol Des; 2020 Feb; 34(2):179-189. PubMed ID: 31879831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DynaDock: A new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility.
    Antes I
    Proteins; 2010 Apr; 78(5):1084-104. PubMed ID: 20017216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docking rigid macrocycles using Convex-PL, AutoDock Vina, and RDKit in the D3R Grand Challenge 4.
    Kadukova M; Chupin V; Grudinin S
    J Comput Aided Mol Des; 2020 Feb; 34(2):191-200. PubMed ID: 31784861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tackling the conformational sampling of larger flexible compounds and macrocycles in pharmacology and drug discovery.
    Chen IJ; Foloppe N
    Bioorg Med Chem; 2013 Dec; 21(24):7898-920. PubMed ID: 24184215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-GPU.
    Santos-Martins D; Eberhardt J; Bianco G; Solis-Vasquez L; Ambrosio FA; Koch A; Forli S
    J Comput Aided Mol Des; 2019 Dec; 33(12):1071-1081. PubMed ID: 31691920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macrocycle modeling in ICM: benchmarking and evaluation in D3R Grand Challenge 4.
    Lam PC; Abagyan R; Totrov M
    J Comput Aided Mol Des; 2019 Dec; 33(12):1057-1069. PubMed ID: 31598897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of macrocycles: comparing general and specialized methods.
    Olanders G; Alogheli H; Brandt P; Karlén A
    J Comput Aided Mol Des; 2020 Mar; 34(3):231-252. PubMed ID: 31965404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble-based docking using biased molecular dynamics.
    Campbell AJ; Lamb ML; Joseph-McCarthy D
    J Chem Inf Model; 2014 Jul; 54(7):2127-38. PubMed ID: 24881672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptidic Macrocycles - Conformational Sampling and Thermodynamic Characterization.
    Kamenik AS; Lessel U; Fuchs JE; Fox T; Liedl KR
    J Chem Inf Model; 2018 May; 58(5):982-992. PubMed ID: 29652495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape.
    Basciu A; Malloci G; Pietrucci F; Bonvin AMJJ; Vargiu AV
    J Chem Inf Model; 2019 Apr; 59(4):1515-1528. PubMed ID: 30883122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based pose prediction: Non-cognate docking extended to macrocyclic ligands.
    Cleves AE; Tandon H; Jain AN
    J Comput Aided Mol Des; 2024 Oct; 38(1):33. PubMed ID: 39414633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark.
    Ding F; Dokholyan NV
    J Chem Inf Model; 2013 Aug; 53(8):1871-9. PubMed ID: 23237273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2017 May; 31(5):419-439. PubMed ID: 28289981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.