BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31222866)

  • 1. The Proteome-Wide Potential for Reversible Covalency at Cysteine.
    Senkane K; Vinogradova EV; Suciu RM; Crowley VM; Zaro BW; Bradshaw JM; Brameld KA; Cravatt BF
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11385-11389. PubMed ID: 31222866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Reactive Cysteine Profiling.
    Backus KM
    Curr Top Microbiol Immunol; 2019; 420():375-417. PubMed ID: 30105421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global profiling of phosphorylation-dependent changes in cysteine reactivity.
    Kemper EK; Zhang Y; Dix MM; Cravatt BF
    Nat Methods; 2022 Mar; 19(3):341-352. PubMed ID: 35228727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A competitive chemical-proteomic platform to identify zinc-binding cysteines.
    Pace NJ; Weerapana E
    ACS Chem Biol; 2014 Jan; 9(1):258-65. PubMed ID: 24111988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine-Targeted Inhibitors and Chemoproteomic Probes.
    Cuesta A; Taunton J
    Annu Rev Biochem; 2019 Jun; 88():365-381. PubMed ID: 30633551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.
    Serafimova IM; Pufall MA; Krishnan S; Duda K; Cohen MS; Maglathlin RL; McFarland JM; Miller RM; Frödin M; Taunton J
    Nat Chem Biol; 2012 Apr; 8(5):471-6. PubMed ID: 22466421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine tagging for MS-based proteomics.
    Giron P; Dayon L; Sanchez JC
    Mass Spectrom Rev; 2011; 30(3):366-95. PubMed ID: 21500242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities.
    Litwin K; Crowley VM; Suciu RM; Boger DL; Cravatt BF
    Tetrahedron Lett; 2021 Mar; 67():. PubMed ID: 33776155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Persulfide Site Identification (qPerS-SID) Reveals Protein Targets of H2S Releasing Donors in Mammalian Cells.
    Longen S; Richter F; Köhler Y; Wittig I; Beck KF; Pfeilschifter J
    Sci Rep; 2016 Jul; 6():29808. PubMed ID: 27411966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrogation of Functional Mitochondrial Cysteine Residues by Quantitative Mass Spectrometry.
    Bak DW; Weerapana E
    Methods Mol Biol; 2019; 1967():211-227. PubMed ID: 31069773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.
    Kuljanin M; Mitchell DC; Schweppe DK; Gikandi AS; Nusinow DP; Bulloch NJ; Vinogradova EV; Wilson DL; Kool ET; Mancias JD; Cravatt BF; Gygi SP
    Nat Biotechnol; 2021 May; 39(5):630-641. PubMed ID: 33398154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Caged Electrophiles for Improved Monitoring of Cysteine Reactivity in Living Cells.
    Abo M; Bak DW; Weerapana E
    Chembiochem; 2017 Jan; 18(1):81-84. PubMed ID: 27813293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide structural analysis identifies warhead- and coverage-specific biases in cysteine-focused chemoproteomics.
    White MEH; Gil J; Tate EW
    Cell Chem Biol; 2023 Jul; 30(7):828-838.e4. PubMed ID: 37451266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assigning functionality to cysteines by base editing of cancer dependency genes.
    Li H; Ma T; Remsberg JR; Won SJ; DeMeester KE; Njomen E; Ogasawara D; Zhao KT; Huang TP; Lu B; Simon GM; Melillo B; Schreiber SL; Lykke-Andersen J; Liu DR; Cravatt BF
    Nat Chem Biol; 2023 Nov; 19(11):1320-1330. PubMed ID: 37783940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoproteomic Profiling by Cysteine Fluoroalkylation Reveals Myrocin G as an Inhibitor of the Nonhomologous End Joining DNA Repair Pathway.
    Abegg D; Tomanik M; Qiu N; Pechalrieu D; Shuster A; Commare B; Togni A; Herzon SB; Adibekian A
    J Am Chem Soc; 2021 Dec; 143(48):20332-20342. PubMed ID: 34817176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells.
    Vinogradova EV; Zhang X; Remillard D; Lazar DC; Suciu RM; Wang Y; Bianco G; Yamashita Y; Crowley VM; Schafroth MA; Yokoyama M; Konrad DB; Lum KM; Simon GM; Kemper EK; Lazear MR; Yin S; Blewett MM; Dix MM; Nguyen N; Shokhirev MN; Chin EN; Lairson LL; Melillo B; Schreiber SL; Forli S; Teijaro JR; Cravatt BF
    Cell; 2020 Aug; 182(4):1009-1026.e29. PubMed ID: 32730809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.