BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31222866)

  • 21. A Quantitative Mass-Spectrometry Platform to Monitor Changes in Cysteine Reactivity.
    Qian Y; Weerapana E
    Methods Mol Biol; 2017; 1491():11-22. PubMed ID: 27778278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative reactivity profiling predicts functional cysteines in proteomes.
    Weerapana E; Wang C; Simon GM; Richter F; Khare S; Dillon MB; Bachovchin DA; Mowen K; Baker D; Cravatt BF
    Nature; 2010 Dec; 468(7325):790-5. PubMed ID: 21085121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.
    Abegg D; Frei R; Cerato L; Prasad Hari D; Wang C; Waser J; Adibekian A
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10852-7. PubMed ID: 26211368
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells.
    Vinogradova EV; Cravatt BF
    STAR Protoc; 2021 Jun; 2(2):100458. PubMed ID: 33899026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Quantitative Chemoproteomic Platform to Monitor Selenocysteine Reactivity within a Complex Proteome.
    Bak DW; Gao J; Wang C; Weerapana E
    Cell Chem Biol; 2018 Sep; 25(9):1157-1167.e4. PubMed ID: 29983274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles.
    Zambaldo C; Vinogradova EV; Qi X; Iaconelli J; Suciu RM; Koh M; Senkane K; Chadwick SR; Sanchez BB; Chen JS; Chatterjee AK; Liu P; Schultz PG; Cravatt BF; Bollong MJ
    J Am Chem Soc; 2020 May; 142(19):8972-8979. PubMed ID: 32302104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments.
    Petri L; Ábrányi-Balogh P; Tímea I; Pálfy G; Perczel A; Knez D; Hrast M; Gobec M; Sosič I; Nyíri K; Vértessy BG; Jänsch N; Desczyk C; Meyer-Almes FJ; Ogris I; Golič Grdadolnik S; Iacovino LG; Binda C; Gobec S; Keserű GM
    Chembiochem; 2021 Feb; 22(4):743-753. PubMed ID: 33030752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Chemically-Cleavable Linkers for Quantitative Mapping of Small Molecule-Cysteinome Reactivity.
    Rabalski AJ; Bogdan AR; Baranczak A
    ACS Chem Biol; 2019 Sep; 14(9):1940-1950. PubMed ID: 31430117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles.
    Wang C; Weerapana E; Blewett MM; Cravatt BF
    Nat Methods; 2014 Jan; 11(1):79-85. PubMed ID: 24292485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical sequence characteristics that influence S-palmitoylation propensity.
    Reddy KD; Malipeddi J; DeForte S; Pejaver V; Radivojac P; Uversky VN; Deschenes RJ
    J Biomol Struct Dyn; 2017 Aug; 35(11):2337-2350. PubMed ID: 27498722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating the proteome reactivity and selectivity of aryl halides.
    Shannon DA; Banerjee R; Webster ER; Bak DW; Wang C; Weerapana E
    J Am Chem Soc; 2014 Mar; 136(9):3330-3. PubMed ID: 24548313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P; Zhang H; Wang H; Xia Y
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteome-Wide Analysis of Cysteine S-Sulfenylation Using a Benzothiazine-Based Probe.
    Fu L; Liu K; Ferreira RB; Carroll KS; Yang J
    Curr Protoc Protein Sci; 2019 Feb; 95(1):e76. PubMed ID: 30312022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation.
    LoPachin RM; Gavin T
    Free Radic Res; 2016; 50(2):195-205. PubMed ID: 26559119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cysteine-specific Chemical Proteomics: From Target Identification to Drug Discovery.
    Hoch DG; Abegg D; Wang C; Shuster A; Adibekian A
    Chimia (Aarau); 2016 Nov; 70(11):764-767. PubMed ID: 28661335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new era of cysteine proteomics - Technological advances in thiol biology.
    Burger N; Chouchani ET
    Curr Opin Chem Biol; 2024 Apr; 79():102435. PubMed ID: 38382148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Features of reactive cysteines discovered through computation: from kinase inhibition to enrichment around protein degrons.
    Fowler NJ; Blanford CF; de Visser SP; Warwicker J
    Sci Rep; 2017 Nov; 7(1):16338. PubMed ID: 29180682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.