These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31222871)
1. Unravelling the sulphur cycle of marine sediments. Jørgensen BB Environ Microbiol; 2019 Oct; 21(10):3533-3538. PubMed ID: 31222871 [TBL] [Abstract][Full Text] [Related]
2. δ(34)S values in recent sea sediments and their significance using several sediment profiles from the western Baltic Sea. Hartmann M; Nielsen H Isotopes Environ Health Stud; 2012; 48(1):7-32. PubMed ID: 22352384 [TBL] [Abstract][Full Text] [Related]
3. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Nauhaus K; Boetius A; Krüger M; Widdel F Environ Microbiol; 2002 May; 4(5):296-305. PubMed ID: 12080959 [TBL] [Abstract][Full Text] [Related]
4. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. Sandfeld T; Marzocchi U; Petro C; Schramm A; Risgaard-Petersen N ISME J; 2020 May; 14(5):1233-1246. PubMed ID: 32042102 [TBL] [Abstract][Full Text] [Related]
5. The bacteria of the sulphur cycle. Pfennig N; Widdel F Philos Trans R Soc Lond B Biol Sci; 1982 Sep; 298(1093):433-41. PubMed ID: 6127734 [TBL] [Abstract][Full Text] [Related]
6. Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Turchyn AV; Schrag DP Science; 2004 Mar; 303(5666):2004-7. PubMed ID: 15044800 [TBL] [Abstract][Full Text] [Related]
7. Microbial interactions in sediment communities. Laanbroek HJ; Veldkamp H Philos Trans R Soc Lond B Biol Sci; 1982 Jun; 297(1088):533-50. PubMed ID: 6125961 [TBL] [Abstract][Full Text] [Related]
8. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Canfield DE; Thamdrup B Science; 1994 Dec; 266():1973-5. PubMed ID: 11540246 [TBL] [Abstract][Full Text] [Related]
10. Productivity-induced sulphur enrichment of hydrocarbon-rich sediments from the Kimmeridge Clay Formation. Lallier-Verges E; Hayes JM; Boussafir M; Zaback DA; Tribovillard NP; Connan J; Bertrand P Chem Geol; 1997; 134():277-88. PubMed ID: 11541254 [TBL] [Abstract][Full Text] [Related]
11. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Varon-Lopez M; Dias AC; Fasanella CC; Durrer A; Melo IS; Kuramae EE; Andreote FD Environ Microbiol; 2014 Mar; 16(3):845-55. PubMed ID: 24033859 [TBL] [Abstract][Full Text] [Related]
12. Sulphur diagenesis in the sediments of the Kiel Bight, SW Baltic Sea, as reflected by multiple stable sulphur isotopes. Strauss H; Bast R; Cording A; Diekrup D; Fugmann A; Garbe-Schönberg D; Lutter A; Oeser M; Rabe K; Reinke D; Teichert BM; Westernströer U Isotopes Environ Health Stud; 2012; 48(1):166-79. PubMed ID: 22303924 [TBL] [Abstract][Full Text] [Related]
13. Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Mussmann M; Schulz HN; Strotmann B; Kjaer T; Nielsen LP; Rosselló-Mora RA; Amann RI; Jørgensen BB Environ Microbiol; 2003 Jun; 5(6):523-33. PubMed ID: 12755720 [TBL] [Abstract][Full Text] [Related]
14. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Broman E; Sjöstedt J; Pinhassi J; Dopson M Microbiome; 2017 Aug; 5(1):96. PubMed ID: 28793929 [TBL] [Abstract][Full Text] [Related]
15. Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland. Strauss H; Chmiel H; Christ A; Fugmann A; Hanselmann K; Kappler A; Königer P; Lutter A; Siedenberg K; Teichert BM Isotopes Environ Health Stud; 2016; 52(1-2):75-93. PubMed ID: 25922968 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic ammonium oxidation linked to sulfate and ferric iron reduction fuels nitrogen loss in marine sediments. Rios-Del Toro EE; Valenzuela EI; López-Lozano NE; Cortés-Martínez MG; Sánchez-Rodríguez MA; Calvario-Martínez O; Sánchez-Carrillo S; Cervantes FJ Biodegradation; 2018 Oct; 29(5):429-442. PubMed ID: 29948518 [TBL] [Abstract][Full Text] [Related]
17. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction. Suarez-Zuluaga DA; Weijma J; Timmers PH; Buisman CJ Environ Sci Pollut Res Int; 2015 Mar; 22(5):3697-704. PubMed ID: 25256585 [TBL] [Abstract][Full Text] [Related]
18. Explaining the structure of the Archean mass-independent sulfur isotope record. Halevy I; Johnston DT; Schrag DP Science; 2010 Jul; 329(5988):204-7. PubMed ID: 20508089 [TBL] [Abstract][Full Text] [Related]
19. Calibration of sulfate levels in the archean ocean. Habicht KS; Gade M; Thamdrup B; Berg P; Canfield DE Science; 2002 Dec; 298(5602):2372-4. PubMed ID: 12493910 [TBL] [Abstract][Full Text] [Related]
20. Stratification of Sulfur Species and Microbial Community in Launched Marine Sediment by an Improved Sulfur-Fractionation Method and 16S rRNA Gene Sequencing. Ihara H; Hori T; Aoyagi T; Hosono H; Takasaki M; Katayama Y Microbes Environ; 2019 Jun; 34(2):199-205. PubMed ID: 31189771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]