BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

953 related articles for article (PubMed ID: 31223060)

  • 21. Investigating effect of proton-exchange membrane on new air-cathode single-chamber microbial fuel cell configuration for bioenergy recovery from Azorubine dye degradation.
    Kardi SN; Ibrahim N; Rashid NAA; Darzi GN
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21201-21215. PubMed ID: 31115820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective and Economical 3D Carbon Sponge with Carbon Nanoparticles as Floating Air Cathode for Sustainable Electricity Production in Microbial Fuel Cells.
    Wang S; Gariepy Y; Adekunle A; Raghavan V
    Appl Biochem Biotechnol; 2024 Apr; 196(4):1820-1839. PubMed ID: 37440114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multipath fabrication of hierarchical CuAl layered double hydroxide/carbon fiber composites for the degradation of ammonia nitrogen.
    Peng X; Wang M; Hu F; Qiu F; Zhang T; Dai H; Cao Z
    J Environ Manage; 2018 Aug; 220():173-182. PubMed ID: 29778953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.
    Mink JE; Hussain MM
    ACS Nano; 2013 Aug; 7(8):6921-7. PubMed ID: 23899322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells.
    Chang CC; Li SL; Hu A; Yu CP
    Chemosphere; 2021 Mar; 266():129059. PubMed ID: 33250234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.
    Wang H; Wang G; Ling Y; Qian F; Song Y; Lu X; Chen S; Tong Y; Li Y
    Nanoscale; 2013 Nov; 5(21):10283-90. PubMed ID: 24057049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficiency of calcined Aluminum-Magnesium layered double hydroxide for adsorption of aflatoxin M
    Jahanmard E; Keramat J; Nasirpour A; Emadi R
    J Food Sci; 2021 Dec; 86(12):5200-5212. PubMed ID: 34773402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-cost nanowired α-MnO
    Majidi MR; Shahbazi Farahani F; Hosseini M; Ahadzadeh I
    Bioelectrochemistry; 2019 Feb; 125():38-45. PubMed ID: 30261369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.
    Thepsuparungsikul N; Phonthamachai N; Ng HY
    Water Sci Technol; 2012; 65(7):1208-14. PubMed ID: 22437017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power generation by packed-bed air-cathode microbial fuel cells.
    Zhang X; Shi J; Liang P; Wei J; Huang X; Zhang C; Logan BE
    Bioresour Technol; 2013 Aug; 142():109-14. PubMed ID: 23732924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous Cr(VI) reduction and electricity generation in Plant-Sediment Microbial Fuel Cells (P-SMFCs): Synthesis of non-bonding Co
    Cheng C; Hu Y; Shao S; Yu J; Zhou W; Cheng J; Chen Y; Chen S; Chen J; Zhang L
    Environ Pollut; 2019 Apr; 247():647-657. PubMed ID: 30711820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Semi-wet methanogen cathode composed of oak white charcoal for developing sustainable microbial fuel cells.
    Nakano H; Nakayasu Y; Umetsu M; Tada C
    J Biosci Bioeng; 2023 Jun; 135(6):480-486. PubMed ID: 37088674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A membrane-less Glucose/O
    Ghanam A; Haddour N; Mohammadi H; Amine A; Sabac A; Buret F
    Biosens Bioelectron; 2022 Aug; 210():114335. PubMed ID: 35512581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell.
    Nourbakhsh F; Mohsennia M; Pazouki M
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1669-1677. PubMed ID: 28766022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete Microbial Fuel Cell Fabrication Using Additive Layer Manufacturing.
    You J; Fan H; Winfield J; Ieropoulos IA
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32635321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical synthesis of nickel-iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole.
    Nejati K; Asadpour-Zeynali K
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():179-84. PubMed ID: 24411366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategic development and performance evaluation of functionalized tea waste ash-clay composite as low-cost, high-performance separator in microbial fuel cell.
    Vempaty A; Mathuriya AS
    Environ Technol; 2023 Aug; 44(18):2713-2724. PubMed ID: 35138220
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.
    Kim M; Kim HW; Nam JY; In SI
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.