These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
429 related articles for article (PubMed ID: 31225500)
1. Metabolic and functional reprogramming of myeloid-derived suppressor cells and their therapeutic control in glioblastoma. Won WJ; Deshane JS; Leavenworth JW; Oliva CR; Griguer CE Cell Stress; 2019 Jan; 3(2):47-65. PubMed ID: 31225500 [TBL] [Abstract][Full Text] [Related]
2. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs. Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS Cells; 2021 Apr; 10(4):. PubMed ID: 33919732 [TBL] [Abstract][Full Text] [Related]
3. The Role of Myeloid Cells in GBM Immunosuppression. Lin YJ; Wu CY; Wu JY; Lim M Front Immunol; 2022; 13():887781. PubMed ID: 35711434 [TBL] [Abstract][Full Text] [Related]
4. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Stepanenko AA; Sosnovtseva AO; Valikhov MP; Chernysheva AA; Abramova OV; Pavlov KA; Chekhonin VP Front Immunol; 2024; 15():1326753. PubMed ID: 38481999 [TBL] [Abstract][Full Text] [Related]
5. Role of myeloid cells in the immunosuppressive microenvironment in gliomas. Locarno CV; Simonelli M; Carenza C; Capucetti A; Stanzani E; Lorenzi E; Persico P; Della Bella S; Passoni L; Mavilio D; Bonecchi R; Locati M; Savino B Immunobiology; 2020 Jan; 225(1):151853. PubMed ID: 31703822 [TBL] [Abstract][Full Text] [Related]
6. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Chaib M; Chauhan SC; Makowski L Front Cell Dev Biol; 2020; 8():351. PubMed ID: 32509781 [TBL] [Abstract][Full Text] [Related]
7. Immunosuppressive cells in oncolytic virotherapy for glioma: challenges and solutions. Liu J; Piranlioglu R; Ye F; Shu K; Lei T; Nakashima H Front Cell Infect Microbiol; 2023; 13():1141034. PubMed ID: 37234776 [TBL] [Abstract][Full Text] [Related]
8. Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma. Exley MA; Garcia S; Zellander A; Zilberberg J; Andrews DW J Clin Med; 2022 Feb; 11(4):. PubMed ID: 35207340 [TBL] [Abstract][Full Text] [Related]
9. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment. Parker KH; Beury DW; Ostrand-Rosenberg S Adv Cancer Res; 2015; 128():95-139. PubMed ID: 26216631 [TBL] [Abstract][Full Text] [Related]
10. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Bossman SA; Ter Laan M; Wesseling P; Adema GJ Neuro Oncol; 2016 Sep; 18(9):1253-64. PubMed ID: 27006175 [TBL] [Abstract][Full Text] [Related]
11. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Dysthe M; Parihar R Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608 [TBL] [Abstract][Full Text] [Related]
12. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Tamura R; Tanaka T; Akasaki Y; Murayama Y; Yoshida K; Sasaki H Med Oncol; 2019 Nov; 37(1):2. PubMed ID: 31713115 [TBL] [Abstract][Full Text] [Related]
13. Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Pang L; Khan F; Heimberger AB; Chen P Trends Cancer; 2022 Oct; 8(10):839-854. PubMed ID: 35624002 [TBL] [Abstract][Full Text] [Related]
14. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Qiu R; Zhong Y; Li Q; Li Y; Fan H Front Cell Dev Biol; 2021; 9():693215. PubMed ID: 34211978 [TBL] [Abstract][Full Text] [Related]
15. Myeloid Derived Suppressor Cells Interactions With Natural Killer Cells and Pro-angiogenic Activities: Roles in Tumor Progression. Bruno A; Mortara L; Baci D; Noonan DM; Albini A Front Immunol; 2019; 10():771. PubMed ID: 31057536 [TBL] [Abstract][Full Text] [Related]
16. Myeloid-derived suppressor cells: The green light for myeloma immune escape. Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116 [TBL] [Abstract][Full Text] [Related]
17. Metabolic Reprogramming of Myeloid-derived Suppressor Cells in the Tumor Microenvironment. Liu L; Huo S; Liu J; Li Q; Wang J Discov Med; 2021; 31(164):141-146. PubMed ID: 35188888 [TBL] [Abstract][Full Text] [Related]
18. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression. Fleming V; Hu X; Weber R; Nagibin V; Groth C; Altevogt P; Utikal J; Umansky V Front Immunol; 2018; 9():398. PubMed ID: 29552012 [TBL] [Abstract][Full Text] [Related]
19. Immune response in glioma's microenvironment. Chen H; Li M; Guo Y; Zhong Y; He Z; Xu Y; Zou J Innov Surg Sci; 2020 Dec; 5(3-4):20190001. PubMed ID: 33511267 [TBL] [Abstract][Full Text] [Related]
20. Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. Metzger P; Kirchleitner SV; Kluge M; Koenig LM; Hörth C; Rambuscheck CA; Böhmer D; Ahlfeld J; Kobold S; Friedel CC; Endres S; Schnurr M; Duewell P J Immunother Cancer; 2019 Nov; 7(1):288. PubMed ID: 31694706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]