These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 31226020)

  • 1. Pathways of DNA Transfer to Plants from
    Lacroix B; Citovsky V
    Annu Rev Phytopathol; 2019 Aug; 57():231-251. PubMed ID: 31226020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional Activation of Virulence Genes of Rhizobium etli.
    Wang L; Lacroix B; Guo J; Citovsky V
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Functional Bacterium-to-Plant DNA Transfer Machinery of Rhizobium etli.
    Lacroix B; Citovsky V
    PLoS Pathog; 2016 Mar; 12(3):e1005502. PubMed ID: 26968003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Profiling of Plant Genes in Response to Agrobacterium tumefaciens-Mediated Transformation.
    Willig CJ; Duan K; Zhang ZJ
    Curr Top Microbiol Immunol; 2018; 418():319-348. PubMed ID: 30062593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation.
    Lacroix B; Citovsky V
    Int J Dev Biol; 2013; 57(6-8):467-81. PubMed ID: 24166430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium.
    Escudero J; Den Dulk-Ras A; Regensburg-Tuïnk TJ; Hooykaas PJ
    Mol Microbiol; 2003 Feb; 47(4):891-901. PubMed ID: 12581347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic factors governing bacterial virulence and host plant susceptibility during
    Lacroix B; Citovsky V
    Adv Genet; 2022; 110():1-29. PubMed ID: 37283660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium tumefaciens-mediated transformation of yeast.
    Piers KL; Heath JD; Liang X; Stephens KM; Nester EW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression.
    Veena ; Jiang H; Doerge RW; Gelvin SB
    Plant J; 2003 Jul; 35(2):219-36. PubMed ID: 12848827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer.
    McCullen CA; Binns AN
    Annu Rev Cell Dev Biol; 2006; 22():101-27. PubMed ID: 16709150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The RNase YbeY Is Vital for Ribosome Maturation, Stress Resistance, and Virulence of the Natural Genetic Engineer
    Möller P; Busch P; Sauerbrei B; Kraus A; Förstner KU; Wen TN; Overlöper A; Lai EM; Narberhaus F
    J Bacteriol; 2019 Jun; 201(11):. PubMed ID: 30885931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycoside Hydrolase Genes Are Required for Virulence of Agrobacterium tumefaciens on
    Mathews SL; Hannah H; Samagaio H; Martin C; Rodriguez-Rassi E; Matthysse AG
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126942
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010.
    Binns AN; Beaupré CE; Dale EM
    J Bacteriol; 1995 Sep; 177(17):4890-9. PubMed ID: 7665465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis.
    Bundock P; Mróczek K; Winkler AA; Steensma HY; Hooykaas PJ
    Mol Gen Genet; 1999 Feb; 261(1):115-21. PubMed ID: 10071217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odyssey of agrobacterium T-DNA.
    Ziemienowicz A
    Acta Biochim Pol; 2001; 48(3):623-35. PubMed ID: 11833771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein.
    Dube T; Kovalchuk I; Hohn B; Thomson JA
    Plant Mol Biol; 2004 Jul; 55(4):531-9. PubMed ID: 15604698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium.
    Hansen G; Das A; Chilton MD
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7603-7. PubMed ID: 8052627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agrobacterium-Mediated Transformation of Yeast and Fungi.
    Hooykaas PJJ; van Heusden GPH; Niu X; Reza Roushan M; Soltani J; Zhang X; van der Zaal BJ
    Curr Top Microbiol Immunol; 2018; 418():349-374. PubMed ID: 29770864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated temperature differentially affects virulence, VirB protein accumulation, and T-pilus formation in different Agrobacterium tumefaciens and Agrobacterium vitis strains.
    Baron C; Domke N; Beinhofer M; Hapfelmeier S
    J Bacteriol; 2001 Dec; 183(23):6852-61. PubMed ID: 11698374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilus assembly by Agrobacterium T-DNA transfer genes.
    Fullner KJ; Lara JC; Nester EW
    Science; 1996 Aug; 273(5278):1107-9. PubMed ID: 8688097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.