These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31226309)

  • 1. Primary cilia in murine palatal rugae development.
    Nakaniwa M; Kawasaki M; Kawasaki K; Yamada A; Meguro F; Takeyasu M; Ohazama A
    Gene Expr Patterns; 2019 Dec; 34():119062. PubMed ID: 31226309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lrp4/Wise regulates palatal rugae development through Turing-type reaction-diffusion mechanisms.
    Kawasaki M; Kawasaki K; Meguro F; Yamada A; Ishikawa R; Porntaveetus T; Blackburn J; Otsuka-Tanaka Y; Saito N; Ota MS; Sharpe PT; Kessler JA; Herz J; Cobourne MT; Maeda T; Ohazama A
    PLoS One; 2018; 13(9):e0204126. PubMed ID: 30235284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate.
    Welsh IC; O'Brien TP
    Dev Biol; 2009 Dec; 336(1):53-67. PubMed ID: 19782673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shh signaling is essential for rugae morphogenesis in mice.
    Lee JM; Miyazawa S; Shin JO; Kwon HJ; Kang DW; Choi BJ; Lee JH; Kondo S; Cho SW; Jung HS
    Histochem Cell Biol; 2011 Dec; 136(6):663-75. PubMed ID: 22038040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palatal development.
    Pantalacci S; Prochazka J; Martin A; Rothova M; Lambert A; Bernard L; Charles C; Viriot L; Peterkova R; Laudet V
    BMC Dev Biol; 2008 Dec; 8():116. PubMed ID: 19087265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus.
    Lin C; Fisher AV; Yin Y; Maruyama T; Veith GM; Dhandha M; Huang GJ; Hsu W; Ma L
    Dev Biol; 2011 Aug; 356(1):40-50. PubMed ID: 21600200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.
    Tian H; Feng J; Li J; Ho TV; Yuan Y; Liu Y; Brindopke F; Figueiredo JC; Magee W; Sanchez-Lara PA; Chai Y
    Hum Mol Genet; 2017 Mar; 26(5):860-872. PubMed ID: 28069795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain.
    Gazea M; Tasouri E; Tolve M; Bosch V; Kabanova A; Gojak C; Kurtulmus B; Novikov O; Spatz J; Pereira G; Hübner W; Brodski C; Tucker KL; Blaess S
    Dev Biol; 2016 Jan; 409(1):55-71. PubMed ID: 26542012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms in palatal rugae development.
    Trakanant S; Nihara J; Kawasaki M; Meguro F; Yamada A; Kawasaki K; Saito I; Takeyasu M; Ohazama A
    J Oral Biosci; 2020 Mar; 62(1):30-35. PubMed ID: 31862387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of Fgf signalling pathway related genes during palatal rugae development in the mouse.
    Porntaveetus T; Oommen S; Sharpe PT; Ohazama A
    Gene Expr Patterns; 2010 Jun; 10(4-5):193-8. PubMed ID: 20348033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ift88 limits bone formation in maxillary process through suppressing apoptosis.
    Watanabe M; Kawasaki M; Kawasaki K; Kitamura A; Nagai T; Kodama Y; Meguro F; Yamada A; Sharpe PT; Maeda T; Takagi R; Ohazama A
    Arch Oral Biol; 2019 May; 101():43-50. PubMed ID: 30878609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraflagellar transport is essential for endochondral bone formation.
    Haycraft CJ; Zhang Q; Song B; Jackson WS; Detloff PJ; Serra R; Yoder BK
    Development; 2007 Jan; 134(2):307-16. PubMed ID: 17166921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ift88 is involved in mandibular development.
    Kitamura A; Kawasaki M; Kawasaki K; Meguro F; Yamada A; Nagai T; Kodama Y; Trakanant S; Sharpe PT; Maeda T; Takagi R; Ohazama A
    J Anat; 2020 Feb; 236(2):317-324. PubMed ID: 31657471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Shh, Bmp and Wnt gene expressions during craniofacial development in mice.
    Paiva KB; Silva-Valenzuela Md; Massironi SM; Ko GM; Siqueira FM; Nunes FD
    Acta Histochem; 2010 Sep; 112(5):508-17. PubMed ID: 19608221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate.
    Chang CF; Serra R
    J Orthop Res; 2013 Mar; 31(3):350-6. PubMed ID: 23034798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development.
    Xu J; Liu H; Lan Y; Aronow BJ; Kalinichenko VV; Jiang R
    PLoS Genet; 2016 Jan; 12(1):e1005769. PubMed ID: 26745863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedgehog signalling in development of the secondary palate.
    Cobourne MT; Green JB
    Front Oral Biol; 2012; 16():52-9. PubMed ID: 22759669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of region-specific epithelial rearrangements in mouse rugae development.
    Sohn WJ; Yamamoto H; Shin HI; Ryoo ZY; Lee S; Bae YC; Jung HS; Kim JY
    Cell Tissue Res; 2011 May; 344(2):271-7. PubMed ID: 21400215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic Hedgehog Signaling Causes Cleft Palate and Defective Osteogenesis.
    Hammond NL; Brookes KJ; Dixon MJ
    J Dent Res; 2018 Dec; 97(13):1485-1493. PubMed ID: 29975848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression patterns of Hedgehog signalling pathway members during mouse palate development.
    Rice R; Connor E; Rice DP
    Gene Expr Patterns; 2006 Jan; 6(2):206-12. PubMed ID: 16168717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.