These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate. Welsh IC; O'Brien TP Dev Biol; 2009 Dec; 336(1):53-67. PubMed ID: 19782673 [TBL] [Abstract][Full Text] [Related]
4. Shh signaling is essential for rugae morphogenesis in mice. Lee JM; Miyazawa S; Shin JO; Kwon HJ; Kang DW; Choi BJ; Lee JH; Kondo S; Cho SW; Jung HS Histochem Cell Biol; 2011 Dec; 136(6):663-75. PubMed ID: 22038040 [TBL] [Abstract][Full Text] [Related]
5. Patterning of palatal rugae through sequential addition reveals an anterior/posterior boundary in palatal development. Pantalacci S; Prochazka J; Martin A; Rothova M; Lambert A; Bernard L; Charles C; Viriot L; Peterkova R; Laudet V BMC Dev Biol; 2008 Dec; 8():116. PubMed ID: 19087265 [TBL] [Abstract][Full Text] [Related]
6. The inductive role of Wnt-β-Catenin signaling in the formation of oral apparatus. Lin C; Fisher AV; Yin Y; Maruyama T; Veith GM; Dhandha M; Huang GJ; Hsu W; Ma L Dev Biol; 2011 Aug; 356(1):40-50. PubMed ID: 21600200 [TBL] [Abstract][Full Text] [Related]
7. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Tian H; Feng J; Li J; Ho TV; Yuan Y; Liu Y; Brindopke F; Figueiredo JC; Magee W; Sanchez-Lara PA; Chai Y Hum Mol Genet; 2017 Mar; 26(5):860-872. PubMed ID: 28069795 [TBL] [Abstract][Full Text] [Related]
8. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Gazea M; Tasouri E; Tolve M; Bosch V; Kabanova A; Gojak C; Kurtulmus B; Novikov O; Spatz J; Pereira G; Hübner W; Brodski C; Tucker KL; Blaess S Dev Biol; 2016 Jan; 409(1):55-71. PubMed ID: 26542012 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms in palatal rugae development. Trakanant S; Nihara J; Kawasaki M; Meguro F; Yamada A; Kawasaki K; Saito I; Takeyasu M; Ohazama A J Oral Biosci; 2020 Mar; 62(1):30-35. PubMed ID: 31862387 [TBL] [Abstract][Full Text] [Related]
10. Expression of Fgf signalling pathway related genes during palatal rugae development in the mouse. Porntaveetus T; Oommen S; Sharpe PT; Ohazama A Gene Expr Patterns; 2010 Jun; 10(4-5):193-8. PubMed ID: 20348033 [TBL] [Abstract][Full Text] [Related]
11. Ift88 limits bone formation in maxillary process through suppressing apoptosis. Watanabe M; Kawasaki M; Kawasaki K; Kitamura A; Nagai T; Kodama Y; Meguro F; Yamada A; Sharpe PT; Maeda T; Takagi R; Ohazama A Arch Oral Biol; 2019 May; 101():43-50. PubMed ID: 30878609 [TBL] [Abstract][Full Text] [Related]
12. Intraflagellar transport is essential for endochondral bone formation. Haycraft CJ; Zhang Q; Song B; Jackson WS; Detloff PJ; Serra R; Yoder BK Development; 2007 Jan; 134(2):307-16. PubMed ID: 17166921 [TBL] [Abstract][Full Text] [Related]
16. A Shh-Foxf-Fgf18-Shh Molecular Circuit Regulating Palate Development. Xu J; Liu H; Lan Y; Aronow BJ; Kalinichenko VV; Jiang R PLoS Genet; 2016 Jan; 12(1):e1005769. PubMed ID: 26745863 [TBL] [Abstract][Full Text] [Related]
17. Hedgehog signalling in development of the secondary palate. Cobourne MT; Green JB Front Oral Biol; 2012; 16():52-9. PubMed ID: 22759669 [TBL] [Abstract][Full Text] [Related]
18. Importance of region-specific epithelial rearrangements in mouse rugae development. Sohn WJ; Yamamoto H; Shin HI; Ryoo ZY; Lee S; Bae YC; Jung HS; Kim JY Cell Tissue Res; 2011 May; 344(2):271-7. PubMed ID: 21400215 [TBL] [Abstract][Full Text] [Related]