BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31226347)

  • 1. Growth-coupled bioconversion of levulinic acid to butanone.
    Mehrer CR; Rand JM; Incha MR; Cook TB; Demir B; Motagamwala AH; Kim D; Dumesic JA; Pfleger BF
    Metab Eng; 2019 Sep; 55():92-101. PubMed ID: 31226347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metabolic pathway for catabolizing levulinic acid in bacteria.
    Rand JM; Pisithkul T; Clark RL; Thiede JM; Mehrer CR; Agnew DE; Campbell CE; Markley AL; Price MN; Ray J; Wetmore KM; Suh Y; Arkin AP; Deutschbauer AM; Amador-Noguez D; Pfleger BF
    Nat Microbiol; 2017 Dec; 2(12):1624-1634. PubMed ID: 28947739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass.
    Habe H; Sato Y; Kirimura K
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7767-7775. PubMed ID: 32770274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum.
    Min K; Kim S; Yum T; Kim Y; Sang BI; Um Y
    Appl Microbiol Biotechnol; 2013 Jun; 97(12):5627-34. PubMed ID: 23624707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Escherichia coli for Microbial Production of Butanone.
    Srirangan K; Liu X; Akawi L; Bruder M; Moo-Young M; Chou CP
    Appl Environ Microbiol; 2016 May; 82(9):2574-2584. PubMed ID: 26896132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks.
    Chang C; Liu B; Bao Y; Tao Y; Liu W
    Microb Cell Fact; 2021 Mar; 20(1):68. PubMed ID: 33706766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of
    Kim D; Lee SK
    J Microbiol Biotechnol; 2022 Jan; 32(1):110-116. PubMed ID: 34675141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the lva operon and Optimization of Culture Conditions for Enhanced Production of 4-Hydroxyvalerate from Levulinic Acid in Pseudomonas putida KT2440.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2019 Mar; 67(9):2540-2546. PubMed ID: 30773878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of alkyl methyl ketones by Pseudomonas veronii MEK700.
    Onaca C; Kieninger M; Engesser KH; Altenbuchner J
    J Bacteriol; 2007 May; 189(10):3759-67. PubMed ID: 17351032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans.
    Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J
    Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Level Production of 4-Hydroxyvalerate from Levulinic Acid via Whole-Cell Biotransformation Decoupled from Cell Metabolism.
    Kim D; Sathesh-Prabu C; JooYeon Y; Lee SK
    J Agric Food Chem; 2019 Sep; 67(38):10678-10684. PubMed ID: 31475535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Genetically Encoded Biosensor for the Detection of Levulinic Acid.
    Kim TH; Woo SG; Kim SK; Yoo BH; Shin J; Rha E; Kim SJ; Kwon KK; Lee H; Kim H; Kim HT; Sung BH; Lee SG; Lee DH
    J Microbiol Biotechnol; 2023 Apr; 33(4):552-558. PubMed ID: 36775859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production.
    Yang J; Son JH; Kim H; Cho S; Na JG; Yeon YJ; Lee J
    Microb Cell Fact; 2019 Oct; 18(1):168. PubMed ID: 31601210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and characterization of levulinyl-CoA synthetase from Pseudomonas citronellolis, which differs phylogenetically from LvaE of Pseudomonas putida.
    Habe H; Koike H; Sato Y; Iimura Y; Hori T; Kanno M; Kimura N; Kirimura K
    AMB Express; 2019 Aug; 9(1):127. PubMed ID: 31410607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological production of 2-butanone in Escherichia coli.
    Yoneda H; Tantillo DJ; Atsumi S
    ChemSusChem; 2014 Jan; 7(1):92-5. PubMed ID: 24193695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioproduction of propionic acid using levulinic acid by engineered
    Tiwari R; Sathesh-Prabu C; Lee SK
    Front Bioeng Biotechnol; 2022; 10():939248. PubMed ID: 36032729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Metabolic Rewiring Enables Efficient Acetyl Coenzyme A Assimilation in Paracoccus denitrificans.
    Kremer K; van Teeseling MCF; Schada von Borzyskowski L; Bernhardsgrütter I; van Spanning RJM; Gates AJ; Remus-Emsermann MNP; Thanbichler M; Erb TJ
    mBio; 2019 Jul; 10(4):. PubMed ID: 31289174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds.
    Geitner K; Rehdorf J; Snajdrova R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1087-93. PubMed ID: 20689951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.