These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31226433)

  • 41. Recent developments in organ-on-a-chip technology for cardiovascular disease research.
    Liu Y; Lin L; Qiao L
    Anal Bioanal Chem; 2023 Jul; 415(18):3911-3925. PubMed ID: 36867198
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.
    Varone A; Nguyen JK; Leng L; Barrile R; Sliz J; Lucchesi C; Wen N; Gravanis A; Hamilton GA; Karalis K; Hinojosa CD
    Biomaterials; 2021 Aug; 275():120957. PubMed ID: 34130145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture.
    Buentello DC; Garcia-Corral M; Trujillo-de Santiago G; Alvarez MM
    IEEE Rev Biomed Eng; 2024; 17():243-263. PubMed ID: 36301779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells.
    Wertheim L; Shapira A; Amir RJ; Dvir T
    Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.
    Mattern K; Beißner N; Reichl S; Dietzel A
    Eur J Pharm Biopharm; 2018 May; 126():159-165. PubMed ID: 28442371
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.
    Dauth S; Maoz BM; Sheehy SP; Hemphill MA; Murty T; Macedonia MK; Greer AM; Budnik B; Parker KK
    J Neurophysiol; 2017 Mar; 117(3):1320-1341. PubMed ID: 28031399
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Brain-on-a-chip: Recent advances in design and techniques for microfluidic models of the brain in health and disease.
    Amirifar L; Shamloo A; Nasiri R; de Barros NR; Wang ZZ; Unluturk BD; Libanori A; Ievglevskyi O; Diltemiz SE; Sances S; Balasingham I; Seidlits SK; Ashammakhi N
    Biomaterials; 2022 Jun; 285():121531. PubMed ID: 35533441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
    Charelli LE; Ferreira JPD; Naveira-Cotta CP; Balbino TA
    J Tissue Eng Regen Med; 2021 Nov; 15(11):883-899. PubMed ID: 34339588
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors.
    Trujillo-de Santiago G; Flores-Garza BG; Tavares-Negrete JA; Lara-Mayorga IM; González-Gamboa I; Zhang YS; Rojas-Martínez A; Ortiz-López R; Álvarez MM
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31514390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases.
    Banh L; Cheung KK; Chan MWY; Young EWK; Viswanathan S
    Osteoarthritis Cartilage; 2022 Aug; 30(8):1050-1061. PubMed ID: 35460872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.
    Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S
    Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frugal Approach toward Developing a Biomimetic, Microfluidic Network-on-a-Chip for In Vitro Analysis of Microvascular Physiology.
    Priyadarshani J; Roy T; Das S; Chakraborty S
    ACS Biomater Sci Eng; 2021 Mar; 7(3):1263-1277. PubMed ID: 33555875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Organs-on-chips: Progress, challenges, and future directions.
    Low LA; Tagle DA
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1573-1578. PubMed ID: 28343437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brain-on-a-Chip Device for Modeling Multiregional Networks.
    Ndyabawe K; Cipriano M; Zhao W; Haidekker M; Yao K; Mao L; Kisaalita WS
    ACS Biomater Sci Eng; 2021 Jan; 7(1):350-359. PubMed ID: 33320530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cellular matrices: Physiology in microfluidics.
    Hubbell JA
    Nat Mater; 2008 Aug; 7(8):609-10. PubMed ID: 18654581
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.