BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31226555)

  • 1. Comparing flow cytometry with culture-based methods for microbial monitoring and as a diagnostic tool for assessing drinking water treatment processes.
    Cheswick R; Cartmell E; Lee S; Upton A; Weir P; Moore G; Nocker A; Jefferson B; Jarvis P
    Environ Int; 2019 Sep; 130():104893. PubMed ID: 31226555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the suitability of online flow cytometry for monitoring full-scale drinking water ozone system disinfection effectiveness.
    Dowdell KS; Olsen K; Martinez Paz EF; Sun A; Keown J; Lahr R; Steglitz B; Busch A; LiPuma JJ; Olson T; Raskin L
    Water Res; 2024 Jun; 257():121702. PubMed ID: 38749337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring.
    Van Nevel S; Koetzsch S; Proctor CR; Besmer MD; Prest EI; Vrouwenvelder JS; Knezev A; Boon N; Hammes F
    Water Res; 2017 Apr; 113():191-206. PubMed ID: 28214393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.
    Prest EI; Hammes F; Kötzsch S; van Loosdrecht MC; Vrouwenvelder JS
    Water Res; 2013 Dec; 47(19):7131-42. PubMed ID: 24183559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing microbiological water quality in drinking water distribution systems with disinfectant residual using flow cytometry.
    Gillespie S; Lipphaus P; Green J; Parsons S; Weir P; Juskowiak K; Jefferson B; Jarvis P; Nocker A
    Water Res; 2014 Nov; 65():224-34. PubMed ID: 25123436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for microbiological quality assessment in drinking water: a comparative study.
    Helmi K; Barthod F; Méheut G; Henry A; Poty F; Laurent F; Charni-Ben-Tabassi N
    J Water Health; 2015 Mar; 13(1):34-41. PubMed ID: 25719463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining flow cytometry and 16S rRNA gene pyrosequencing: a promising approach for drinking water monitoring and characterization.
    Prest EI; El-Chakhtoura J; Hammes F; Saikaly PE; van Loosdrecht MC; Vrouwenvelder JS
    Water Res; 2014 Oct; 63():179-89. PubMed ID: 25000200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.
    Prest EI; Weissbrodt DG; Hammes F; van Loosdrecht MC; Vrouwenvelder JS
    PLoS One; 2016; 11(10):e0164445. PubMed ID: 27792739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.
    Hammes F; Berney M; Wang Y; Vital M; Köster O; Egli T
    Water Res; 2008 Jan; 42(1-2):269-77. PubMed ID: 17659762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Improving the standard and methodological basis for bacteriological monitoring the quality of drinking water].
    Nedachin AE; Artemova TZ; Ivanova LV; Talaeva IuG; Bogatyreva IA; Butorina NN; Zagaĭnova AV
    Gig Sanit; 2007; (5):36-9. PubMed ID: 18050700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological instability in a chlorinated drinking water distribution network.
    Nescerecka A; Rubulis J; Vital M; Juhna T; Hammes F
    PLoS One; 2014; 9(5):e96354. PubMed ID: 24796923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems.
    Liu G; Van der Mark EJ; Verberk JQ; Van Dijk JC
    Biomed Res Int; 2013; 2013():595872. PubMed ID: 23819117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of DNA extraction yield from a chlorinated drinking water distribution system.
    Putri RE; Kim LH; Farhat N; Felemban M; Saikaly PE; Vrouwenvelder JS
    PLoS One; 2021; 16(6):e0253799. PubMed ID: 34166448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of disinfectant residual on the interaction between bacterial growth and assimilable organic carbon in a drinking water distribution system.
    Li W; Zhang J; Wang F; Qian L; Zhou Y; Qi W; Chen J
    Chemosphere; 2018 Jul; 202():586-597. PubMed ID: 29597176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of enhanced assimilable organic carbon method across operational drinking water systems.
    Pick FC; Fish KE; Biggs CA; Moses JP; Moore G; Boxall JB
    PLoS One; 2019; 14(12):e0225477. PubMed ID: 31809502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of biofilm cell quantification methods for drinking water distribution systems.
    Waller SA; Packman AI; Hausner M
    J Microbiol Methods; 2018 Jan; 144():8-21. PubMed ID: 29111400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometry and adenosine tri-phosphate analysis: alternative possibilities to evaluate major bacteriological changes in drinking water treatment and distribution systems.
    Vital M; Dignum M; Magic-Knezev A; Ross P; Rietveld L; Hammes F
    Water Res; 2012 Oct; 46(15):4665-76. PubMed ID: 22763289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of assimilable organic carbon and free chlorine on bacterial growth in drinking water.
    Liu X; Wang J; Liu T; Kong W; He X; Jin Y; Zhang B
    PLoS One; 2015; 10(6):e0128825. PubMed ID: 26034988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometry for immediate follow-up of drinking water networks after maintenance.
    Van Nevel S; Buysschaert B; De Roy K; De Gusseme B; Clement L; Boon N
    Water Res; 2017 Mar; 111():66-73. PubMed ID: 28043001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.
    Hammes F; Egli T
    Anal Bioanal Chem; 2010 Jun; 397(3):1083-95. PubMed ID: 20352197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.