These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31226613)

  • 21. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor.
    Suzuki A; Nonaka H
    Rev Sci Instrum; 2009 Sep; 80(9):095109. PubMed ID: 19791966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atmospheric air plasma sustainment by semiconductor microwave for hydroxyl radical production and powder metal element analysis.
    Ikeda Y
    Opt Express; 2022 Aug; 30(17):29868-29884. PubMed ID: 36242102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel property of gold nanoparticles: Free radical generation under microwave irradiation.
    Paudel NR; Shvydka D; Parsai EI
    Med Phys; 2016 Apr; 43(4):1598. PubMed ID: 27036559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-enhanced laser-induced air plasma at atmospheric pressure.
    Ikeda Y; Soriano JK
    Opt Express; 2022 Sep; 30(19):33756-33766. PubMed ID: 36242403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermalization of rotational states of NO A(2)Σ+(v = 0) in an atmospheric pressure plasma.
    van Gessel AF; Bruggeman PJ
    J Chem Phys; 2013 May; 138(20):204306. PubMed ID: 23742474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of a new carbon tetrachloride destruction system based on a microwave plasma torch operating at atmospheric pressure.
    Rubio SJ; Quintero MC; Rodero A; Rodriguez JM
    J Hazard Mater; 2007 Sep; 148(1-2):419-27. PubMed ID: 17408853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurements of plasma potential in high-pressure microwave plasmas.
    Tarasova AV; Podder NK; Clothiaux EJ
    Rev Sci Instrum; 2009 Apr; 80(4):043506. PubMed ID: 19405659
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectroscopic study of an expanded argon microwave (2.45 GHz) plasma at atmospheric pressure in a helium environment.
    García MC; Varo M; Martínez P
    Appl Spectrosc; 2009 Jul; 63(7):822-9. PubMed ID: 19589221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization and comparison of chemical and electrochemical hydride generation for optical emission spectrometric determination of arsenic and antimony using a novel miniaturized microwave induced argon plasma exiting the microstrip wafer.
    Pohl P; Zapata IJ; Bings NH
    Anal Chim Acta; 2008 Jan; 606(1):9-18. PubMed ID: 18068765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cold plasma brush generated at atmospheric pressure.
    Duan Y; Huang C; Yu QS
    Rev Sci Instrum; 2007 Jan; 78(1):015104. PubMed ID: 17503943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Filamentary streamer discharges in argon at atmospheric pressure excited by surface plasmon polaritons.
    Chen Z; Xia G; Zhou Q; Hu Y; Zheng X; Zheng Z; Hong L; Li P; Huang Y; Liu M
    Rev Sci Instrum; 2012 Aug; 83(8):084701. PubMed ID: 22938318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atmospheric chemistry of CH3CHF2 (HFC-152a): kinetics, mechanisms, and products of Cl atom- and OH radical-initiated oxidation in the presence and absence of NO(x).
    Taketani F; Nakayama T; Takahashi K; Matsumi Y; Hurley MD; Wallington TJ; Toft A; Sulbaek Andersen MP
    J Phys Chem A; 2005 Oct; 109(40):9061-9. PubMed ID: 16332012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Abel inversion applied to a small set of emission data from a microwave plasma.
    Sáinz A; Díaz A; Casas D; Pineda M; Cubillo F; Calzada MD
    Appl Spectrosc; 2006 Mar; 60(3):229-36. PubMed ID: 16608564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Replacing the Argon ICP: Nitrogen Microwave Inductively Coupled Atmospheric-Pressure Plasma (MICAP) for Mass Spectrometry.
    Schild M; Gundlach-Graham A; Menon A; Jevtic J; Pikelja V; Tanner M; Hattendorf B; Günther D
    Anal Chem; 2018 Nov; 90(22):13443-13450. PubMed ID: 30350630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional analysis of microwave generated plasmas with extended planar laser-induced fluorescence.
    Stopper U; Lindner P; Schumacher U
    Rev Sci Instrum; 2007 Apr; 78(4):043508. PubMed ID: 17477661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental method for determining the damping parameter of spectral lines emitted by a microwave plasma at atmospheric pressure.
    Santiago I; García MC; Calzada MD
    Appl Spectrosc; 2005 Dec; 59(12):1457-64. PubMed ID: 16390583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperspectral imaging of a microwave argon plasma jet expanding in ambient air.
    Khazem F; Durocher-Jean A; Hamdan A; Stafford L
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38717276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apparatus for generating quasi-free-space microwave-driven plasmas.
    Hoff BW; French DM; Reid RR; Lawrance JE; Lepell PD; Maestas SS
    Rev Sci Instrum; 2016 Mar; 87(3):033507. PubMed ID: 27036777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local OH concentration measurement in atmospheric pressure flames by a laser-saturated fluorescence method: two-optical path laser-induced fluorescence.
    Desgroux P; Cottereau MJ
    Appl Opt; 1991 Jan; 30(1):90-7. PubMed ID: 20581952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The development of microplasmas for spectrochemical analysis.
    Broekaert JA
    Anal Bioanal Chem; 2002 Sep; 374(2):182-7. PubMed ID: 12324835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.