These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31226784)

  • 1. Estimating the Vertical Structure of Weather-Induced Mission Costs for Small UAS.
    Bird JJ; Richardson SJ; Langelaan JW
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moving towards a Network of Autonomous UAS Atmospheric Profiling Stations for Observations in the Earth's Lower Atmosphere: The 3D Mesonet Concept.
    Chilson PB; Bell TM; Brewster KA; Britto Hupsel de Azevedo G; Carr FH; Carson K; Doyle W; Fiebrich CA; Greene BR; Grimsley JL; Kanneganti ST; Martin J; Moore A; Palmer RD; Pillar-Little EA; Salazar-Cerreno JL; Segales AR; Weber ME; Yeary M; Droegemeier KK
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31213000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedded Computation Architectures for Autonomy in Unmanned Aircraft Systems (UAS).
    Mejias L; Diguet JP; Dezan C; Campbell D; Kok J; Coppin G
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward sustainable meteorological profiling in polar regions: Case studies using an inexpensive UAS on measuring lower boundary layers with quality of radiosondes.
    Inoue J; Sato K
    Environ Res; 2022 Apr; 205():112468. PubMed ID: 34863988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncrewed aircraft systems versus motorcycles to deliver laboratory samples in west Africa: a comparative economic study.
    Ochieng WO; Ye T; Scheel C; Lor A; Saindon J; Yee SL; Meltzer MI; Kapil V; Karem K
    Lancet Glob Health; 2020 Jan; 8(1):e143-e151. PubMed ID: 31839129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmanned aerial survey of elephants.
    Vermeulen C; Lejeune P; Lisein J; Sawadogo P; Bouché P
    PLoS One; 2013; 8(2):e54700. PubMed ID: 23405088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Cyber-Physical-Human System for One-to-Many UAS Operations: Cognitive Load Analysis.
    Planke LJ; Lim Y; Gardi A; Sabatini R; Kistan T; Ezer N
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32977713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications.
    Vidal I; Bellavista P; Sanchez-Aguero V; Garcia-Reinoso J; Valera F; Nogales B; Azcorra A
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The economic and operational value of using drones to transport vaccines.
    Haidari LA; Brown ST; Ferguson M; Bancroft E; Spiker M; Wilcox A; Ambikapathi R; Sampath V; Connor DL; Lee BY
    Vaccine; 2016 Jul; 34(34):4062-7. PubMed ID: 27340098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-altitude vertical wind profile estimation using multirotor vehicles.
    McConville A; Richardson T
    Front Robot AI; 2023; 10():1112889. PubMed ID: 36936410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method for Detecting Atmospheric Lagrangian Coherent Structures Using a Single Fixed-Wing Unmanned Aircraft System.
    Nolan PJ; McClelland HG; Woolsey CA; Ross SD
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Balloon-Launched Unmanned Glider to Validate Real-Time WRF Modeling.
    Schuyler TJ; Gohari SMI; Pundsack G; Berchoff D; Guzman MI
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31018528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ranges of Injury Risk Associated with Impact from Unmanned Aircraft Systems.
    Campolettano ET; Bland ML; Gellner RA; Sproule DW; Rowson B; Tyson AM; Duma SM; Rowson S
    Ann Biomed Eng; 2017 Dec; 45(12):2733-2741. PubMed ID: 28913606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling.
    Shin S; Park S; Kim Y; Matson ET
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and Deployment of Air-Launched Drifters from Small UAS.
    Swenson S; Argrow B; Frew E; Borenstein S; Keeler J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31075892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sense and avoid requirements for unmanned aircraft systems using a target level of safety approach.
    Melnyk R; Schrage D; Volovoi V; Jimenez H
    Risk Anal; 2014 Oct; 34(10):1894-906. PubMed ID: 24724619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue.
    Van Tilburg C
    Wilderness Environ Med; 2017 Jun; 28(2):116-118. PubMed ID: 28318989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dynamic Navigation Model for Unmanned Aircraft Systems and an Application to Autonomous Front-On Environmental Sensing and Photography Using Low-Cost Sensor Systems.
    Cooper AJ; Redman CA; Stoneham DM; Gonzalez LF; Etse VK
    Sensors (Basel); 2015 Aug; 15(9):21537-53. PubMed ID: 26343680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review.
    Mulero-Pázmány M; Jenni-Eiermann S; Strebel N; Sattler T; Negro JJ; Tablado Z
    PLoS One; 2017; 12(6):e0178448. PubMed ID: 28636611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.