BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31226799)

  • 1. Prebiotic Sugar Formation Under Nonaqueous Conditions and Mechanochemical Acceleration.
    Lamour S; Pallmann S; Haas M; Trapp O
    Life (Basel); 2019 Jun; 9(2):. PubMed ID: 31226799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting.
    Haas M; Lamour S; Christ SB; Trapp O
    Commun Chem; 2020 Oct; 3(1):140. PubMed ID: 36703456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemical Prebiotic Peptide Bond Formation*.
    Stolar T; Grubešić S; Cindro N; Meštrović E; Užarević K; Hernández JG
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12727-12731. PubMed ID: 33769680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebiotic Synthesis of Glycolaldehyde and Glyceraldehyde from Formaldehyde: A Computational Study on the Initial Steps of the Formose Reaction.
    Venturini A; González J
    Chempluschem; 2024 Mar; 89(3):e202300388. PubMed ID: 37932034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxymethanesulfonate from Volcanic Sulfur Dioxide: A "Mineral" Reservoir for Formaldehyde and Other Simple Carbohydrates in Prebiotic Chemistry.
    Kawai J; McLendon DC; Kim HJ; Benner SA
    Astrobiology; 2019 Apr; 19(4):506-516. PubMed ID: 30615473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formose Reaction Controlled by a Copolymer of N,N-Dimethylacrylamide and 4-Vinylphenylboronic Acid.
    Michitaka T; Imai T; Hashidzume A
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiotic synthesis of simple sugars by photoredox systems chemistry.
    Ritson D; Sutherland JD
    Nat Chem; 2012 Nov; 4(11):895-9. PubMed ID: 23089863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic formation of monosaccharides: from the formose reaction towards selective synthesis.
    Delidovich IV; Simonov AN; Taran OP; Parmon VN
    ChemSusChem; 2014 Jul; 7(7):1833-46. PubMed ID: 24930572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serpentinization-Associated Mineral Catalysis of the Protometabolic Formose System.
    Omran A; Gonzalez A; Menor-Salvan C; Gaylor M; Wang J; Leszczynski J; Feng T
    Life (Basel); 2023 May; 13(6):. PubMed ID: 37374080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Plausible Prebiotic Path to Nucleosides: Ribosides and Related Aldosides Generated from Ribulose, Fructose, and Similar Abiotic Precursors.
    Roche TP; Fialho DM; Menor-Salván C; Krishnamurthy R; Schuster GB; Hud NV
    Chemistry; 2023 Jan; 29(6):e202203036. PubMed ID: 36261321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential formation of specific hexose and heptose in the formose reaction under microwave irradiation.
    Hashidzume A; Imai T; Deguchi N; Tanibayashi T; Ikeda T; Michitaka T; Kuwahara S; Nakahata M; Kamon Y; Todokoro Y
    RSC Adv; 2023 Jan; 13(6):4089-4095. PubMed ID: 36756559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiotic Ribose Synthesis Under Aqueous Environments with Various Chemical Conditions.
    Ono C; Sunami S; Ishii Y; Kim HJ; Kakegawa T; Benner SA; Furukawa Y
    Astrobiology; 2024 May; 24(5):489-497. PubMed ID: 38696654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer.
    Eckhardt AK; Linden MM; Wende RC; Bernhardt B; Schreiner PR
    Nat Chem; 2018 Nov; 10(11):1141-1147. PubMed ID: 30202100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions.
    Breslow R; Cheng ZL
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5723-5. PubMed ID: 20231487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sugar-driven prebiotic synthesis of ammonia from nitrite.
    Weber AL
    Orig Life Evol Biosph; 2010 Jun; 40(3):245-52. PubMed ID: 20213158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prebiotic ribose synthesis: a critical analysis.
    Shapiro R
    Orig Life Evol Biosph; 1988; 18(1-2):71-85. PubMed ID: 2453009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plausibility of the Formose Reaction in Alkaline Hydrothermal Vent Environments.
    Omran A
    Orig Life Evol Biosph; 2023 Jun; 53(1-2):113-125. PubMed ID: 32749559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability of DL-Glyceraldehyde under Simulated Hydrothermal Conditions: Synthesis of Sugar-like Compounds in an Iron(III)-Oxide-Hydroxide-Rich Environment under Acidic Conditions.
    Fuentes-Carreón CA; Cruz-Castañeda JA; Mateo-Martí E; Negrón-Mendoza A
    Life (Basel); 2022 Nov; 12(11):. PubMed ID: 36362973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The silicate-mediated formose reaction: bottom-up synthesis of sugar silicates.
    Lambert JB; Gurusamy-Thangavelu SA; Ma K
    Science; 2010 Feb; 327(5968):984-6. PubMed ID: 20167782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do Soluble Phosphates Direct the Formose Reaction towards Pentose Sugars?
    Camprubi E; Harrison SA; Jordan SF; Bonnel J; Pinna S; Lane N
    Astrobiology; 2022 Aug; 22(8):981-991. PubMed ID: 35833833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.