BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31227158)

  • 1. Facile and quick formation of cellulose nanopaper with nanoparticles and its characterization.
    Ma L; Xu Z; Zhang X; Lin J; Tai R
    Carbohydr Polym; 2019 Oct; 221():195-201. PubMed ID: 31227158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils.
    Djafari Petroudy SR; Rasooly Garmaroody E; Rudi H
    Carbohydr Polym; 2017 Feb; 157():1883-1891. PubMed ID: 27987908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Water Softening with TEMPO-Oxidized/Phosphorylated Nanopapers.
    Mautner A; Kobkeatthawin T; Mayer F; Plessl C; Gorgieva S; Kokol V; Bismarck A
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30678201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices.
    Lay M; Pèlach MÀ; Pellicer N; Tarrés JA; Bun KN; Vilaseca F
    Carbohydr Polym; 2017 Jun; 165():86-95. PubMed ID: 28363579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Opto- and Thermal-Rewrite PCM/CNF-IR 780 Energy Storage Nanopaper with Mechanical Regulated Performance.
    Liu J; Jiao D; Hoenders D; Lossada F; Yu W; Zhu B; Walther A; Zhang Q
    Small; 2022 Jun; 18(25):e2200688. PubMed ID: 35599429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils.
    Hu F; Zeng J; Li J; Wang B; Cheng Z; Wang T; Chen K
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14640-14653. PubMed ID: 35290013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band.
    Gopakumar DA; Pai AR; Pottathara YB; Pasquini D; Carlos de Morais L; Luke M; Kalarikkal N; Grohens Y; Thomas S
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20032-20043. PubMed ID: 29812890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Filtration-Free Method to Prepare Lactic Acid-Modified Cellulose Nanopaper.
    Sethi J; Liimatainen H; Sirviö JA
    ACS Omega; 2021 Jul; 6(29):19038-19044. PubMed ID: 34337242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers.
    Sethi J; Visanko M; Österberg M; Sirviö JA
    Carbohydr Polym; 2019 Jan; 203():148-156. PubMed ID: 30318198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF).
    Yang B; Zhang M; Lu Z; Tan J; Luo J; Song S; Ding X; Wang L; Lu P; Zhang Q
    Carbohydr Polym; 2019 Mar; 208():372-381. PubMed ID: 30658813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength.
    Chen F; Xiang W; Sawada D; Bai L; Hummel M; Sixta H; Budtova T
    ACS Nano; 2020 Sep; 14(9):11150-11159. PubMed ID: 32804482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures.
    Sehaqui H; Liu A; Zhou Q; Berglund LA
    Biomacromolecules; 2010 Sep; 11(9):2195-8. PubMed ID: 20698565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Fibrillating Cellulose Fibers: Rapid In Situ Nanofibrillation to Prepare Strong, Transparent, and Gas Barrier Nanopapers.
    Gorur YC; Larsson PA; Wågberg L
    Biomacromolecules; 2020 Apr; 21(4):1480-1488. PubMed ID: 32167304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose nanopaper structures of high toughness.
    Henriksson M; Berglund LA; Isaksson P; Lindström T; Nishino T
    Biomacromolecules; 2008 Jun; 9(6):1579-85. PubMed ID: 18498189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane.
    Sethi J; Farooq M; Österberg M; Illikainen M; Sirviö JA
    Carbohydr Polym; 2018 Nov; 199():286-293. PubMed ID: 30143131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making.
    Sethi J; Oksman K; Illikainen M; Sirviö JA
    Carbohydr Polym; 2018 Oct; 197():92-99. PubMed ID: 30007663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics.
    Kim D; Ko Y; Kwon G; Kim UJ; You J
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38517-38525. PubMed ID: 30360060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-based films/nanopapers from lignocellulosic wastes for production of added-value micro-/nanomaterials.
    Guimarães BMR; Scatolino MV; Martins MA; Ferreira SR; Mendes LM; Lima JT; Junior MG; Tonoli GHD
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):8665-8683. PubMed ID: 34490567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.