BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 31227327)

  • 1. The effect of global change on mosquito-borne disease.
    Franklinos LHV; Jones KE; Redding DW; Abubakar I
    Lancet Infect Dis; 2019 Sep; 19(9):e302-e312. PubMed ID: 31227327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 'lifecycle' of human beings: a call to explore vector-borne diseases from an ecosystem perspective.
    Muurlink OT; Taylor-Robinson AW
    Infect Dis Poverty; 2020 Apr; 9(1):37. PubMed ID: 32295629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold dynamics of an almost periodic vector-borne disease model.
    Zhang T; Zhao XQ
    J Math Biol; 2023 Oct; 87(5):72. PubMed ID: 37848568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force.
    Andersen LK; Davis MD
    Int J Dermatol; 2017 Mar; 56(3):252-259. PubMed ID: 27696381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The current and future global distribution and population at risk of dengue.
    Messina JP; Brady OJ; Golding N; Kraemer MUG; Wint GRW; Ray SE; Pigott DM; Shearer FM; Johnson K; Earl L; Marczak LB; Shirude S; Davis Weaver N; Gilbert M; Velayudhan R; Jones P; Jaenisch T; Scott TW; Reiner RC; Hay SI
    Nat Microbiol; 2019 Sep; 4(9):1508-1515. PubMed ID: 31182801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vector-borne disease, climate change and perinatal health.
    Oberlin AM; Wylie BJ
    Semin Perinatol; 2023 Dec; 47(8):151841. PubMed ID: 37852894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climatic Conditions: Conventional and Nanotechnology-Based Methods for the Control of
    Ahmed T; Hyder MZ; Liaqat I; Scholz M
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31480254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general modeling framework for exploring the impact of individual concern and personal protection on vector-borne disease dynamics.
    Roosa K; Fefferman NH
    Parasit Vectors; 2022 Oct; 15(1):361. PubMed ID: 36209182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of climate change on mosquito-borne diseases in Africa.
    Giesen C; Roche J; Redondo-Bravo L; Ruiz-Huerta C; Gomez-Barroso D; Benito A; Herrador Z
    Pathog Glob Health; 2020 Sep; 114(6):287-301. PubMed ID: 32584659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future land-use change predictions using Dyna-Clue to support mosquito-borne disease risk assessment.
    Rakotoarinia MR; Seidou O; Lapen DR; Leighton PA; Ogden NH; Ludwig A
    Environ Monit Assess; 2023 Jun; 195(7):815. PubMed ID: 37286856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Transmission Suitability of Mosquito-Borne Diseases under Climate Change to Underpin Decision Making.
    Sargent K; Mollard J; Henley SF; Bollasina MA
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36294235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MGDrivE 3: A decoupled vector-human framework for epidemiological simulation of mosquito genetic control tools and their surveillance.
    Mondal A; Sánchez C HM; Marshall JM
    PLoS Comput Biol; 2024 May; 20(5):e1012133. PubMed ID: 38805562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Text mining in mosquito-borne disease: A systematic review.
    Ong SQ; Pauzi MBM; Gan KH
    Acta Trop; 2022 Jul; 231():106447. PubMed ID: 35430265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of drones for mosquito surveillance and control.
    Carrasco-Escobar G; Moreno M; Fornace K; Herrera-Varela M; Manrique E; Conn JE
    Parasit Vectors; 2022 Dec; 15(1):473. PubMed ID: 36527116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews.
    Kulkarni MA; Duguay C; Ost K
    Global Health; 2022 Jan; 18(1):1. PubMed ID: 34980187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projecting the risk of mosquito-borne diseases in a warmer and more populated world: a multi-model, multi-scenario intercomparison modelling study.
    Colón-González FJ; Sewe MO; Tompkins AM; Sjödin H; Casallas A; Rocklöv J; Caminade C; Lowe R
    Lancet Planet Health; 2021 Jul; 5(7):e404-e414. PubMed ID: 34245711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia.
    Servadio JL; Rosenthal SR; Carlson L; Bauer C
    J Infect Public Health; 2018; 11(4):566-571. PubMed ID: 29274851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Editorial: Climate Change and the Spread of Vector-Borne Diseases, Including Dengue, Malaria, Lyme Disease, and West Nile Virus Infection.
    Parums DV
    Med Sci Monit; 2024 Jan; 29():e943546. PubMed ID: 38161310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Lancet Commission on dengue and other Aedes-transmitted viral diseases.
    Wilder-Smith A; Lindsay SW; Scott TW; Ooi EE; Gubler DJ; Das P
    Lancet; 2020 Jun; 395(10241):1890-1891. PubMed ID: 32563358
    [No Abstract]   [Full Text] [Related]  

  • 20. Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework.
    Chowell G; Mizumoto K; Banda JM; Poccia S; Perrings C
    Philos Trans R Soc Lond B Biol Sci; 2019 Jun; 374(1775):20180272. PubMed ID: 31056044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.