BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31227413)

  • 1. Transcriptional profiles of early stage red sea urchins (Mesocentrotus franciscanus) reveal differential regulation of gene expression across development.
    Wong JM; Gaitán-Espitia JD; Hofmann GE
    Mar Genomics; 2019 Dec; 48():100692. PubMed ID: 31227413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression patterns of red sea urchins (Mesocentrotus franciscanus) exposed to different combinations of temperature and pCO
    Wong JM; Hofmann GE
    BMC Genomics; 2021 Jan; 22(1):32. PubMed ID: 33413121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin
    Gaitán-Espitia JD; Hofmann GE
    Ecol Evol; 2017 Apr; 7(8):2798-2811. PubMed ID: 28428870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique age-related transcriptional signature in the nervous system of the long-lived red sea urchin Mesocentrotus franciscanus.
    Polinski JM; Kron N; Smith DR; Bodnar AG
    Sci Rep; 2020 Jun; 10(1):9182. PubMed ID: 32514014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression patterns of three Par-related genes in sea urchin embryos.
    Shiomi K; Yamaguchi M
    Gene Expr Patterns; 2008 May; 8(5):323-30. PubMed ID: 18316248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A database of mRNA expression patterns for the sea urchin embryo.
    Wei Z; Angerer RC; Angerer LM
    Dev Biol; 2006 Dec; 300(1):476-84. PubMed ID: 17007833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial genome architecture of the giant red sea urchin Mesocentrotus franciscanus (Strongylocentrotidae, Echinoida).
    Gaitán-Espitia JD; Hofmann GE
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):591-2. PubMed ID: 24724935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-restricted accumulation of a ribosomal protein mRNA is not coordinated with rRNA transcription and precedes growth of the sea urchin pluteus larva.
    Angerer LM; Yang Q; Liesveld J; Kingsley PD; Angerer RC
    Dev Biol; 1992 Jan; 149(1):27-40. PubMed ID: 1728593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly restricted expression at the ectoderm-endoderm boundary of PIHbox 9, a sea urchin homeobox gene related to the human HB9 gene.
    Bellomonte D; Di Bernardo M ; Russo R; Caronia G; Spinelli G
    Mech Dev; 1998 Jun; 74(1-2):185-8. PubMed ID: 9651524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial expression of a forkhead homologue in the sea urchin embryo.
    Harada Y; Akasaka K; Shimada H; Peterson KJ; Davidson EH; Satoh N
    Mech Dev; 1996 Dec; 60(2):163-73. PubMed ID: 9025069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sea-urchin RNAs displaying differences in developmental regulation and in complementarity to a collagen exon probe.
    Nemer M; Harlow P
    Biochim Biophys Acta; 1988 Sep; 950(3):445-9. PubMed ID: 2458766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression pattern of polyketide synthase-2 during sea urchin development.
    Beeble A; Calestani C
    Gene Expr Patterns; 2012; 12(1-2):7-10. PubMed ID: 22001775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted expression of karyopherin alpha mRNA in the sea urchin suggests a role in neurogenesis.
    Byrum CA; Smith J; Easterling MR; Bridges MC
    Gene Expr Patterns; 2014 Sep; 16(1):51-60. PubMed ID: 25218279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [3H]serotonin binding to blastula, gastrula, prism, and pluteus sea urchin embryo cells.
    Brown KM; Shaver JR
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(2):281-5. PubMed ID: 2572382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of alpha- and beta-tubulin genes during development of sea urchin embryos.
    Alexandraki D; Ruderman JV
    Dev Biol; 1985 Jun; 109(2):436-51. PubMed ID: 2860042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapidly diverging EGF protein regulates species-specific signal transduction in early sea urchin development.
    Kamei N; Swanson WJ; Glabe CG
    Dev Biol; 2000 Sep; 225(2):267-76. PubMed ID: 10985849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model.
    Nesbit KT; Fleming T; Batzel G; Pouv A; Rosenblatt HD; Pace DA; Hamdoun A; Lyons DC
    Methods Cell Biol; 2019; 150():105-123. PubMed ID: 30777173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos.
    Roberts JW; Johnson SA; Kier P; Hall TJ; Davidson EH; Britten RJ
    J Mol Evol; 1985; 22(2):99-107. PubMed ID: 2415708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Antarctic sea urchin (Sterechinus neumayeri) transcriptome and mitogenome: a molecular resource for phylogenetics, ecophysiology and global change biology.
    Dilly GF; Gaitán-Espitia JD; Hofmann GE
    Mol Ecol Resour; 2015 Mar; 15(2):425-36. PubMed ID: 25143045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.