These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 31227559)
1. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. Xu G; Cao J; Wang X; Chen Q; Jin W; Li Z; Tian F Plant Cell; 2019 Sep; 31(9):1990-2009. PubMed ID: 31227559 [TBL] [Abstract][Full Text] [Related]
2. Population genomics of Zea species identifies selection signatures during maize domestication and adaptation. Xu G; Zhang X; Chen W; Zhang R; Li Z; Wen W; Warburton ML; Li J; Li H; Yang X BMC Plant Biol; 2022 Feb; 22(1):72. PubMed ID: 35180846 [TBL] [Abstract][Full Text] [Related]
3. The genetic architecture of teosinte catalyzed and constrained maize domestication. Yang CJ; Samayoa LF; Bradbury PJ; Olukolu BA; Xue W; York AM; Tuholski MR; Wang W; Daskalska LL; Neumeyer MA; Sanchez-Gonzalez JJ; Romay MC; Glaubitz JC; Sun Q; Buckler ES; Holland JB; Doebley JF Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5643-5652. PubMed ID: 30842282 [TBL] [Abstract][Full Text] [Related]
4. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Guo L; Wang X; Zhao M; Huang C; Li C; Li D; Yang CJ; York AM; Xue W; Xu G; Liang Y; Chen Q; Doebley JF; Tian F Curr Biol; 2018 Sep; 28(18):3005-3015.e4. PubMed ID: 30220503 [TBL] [Abstract][Full Text] [Related]
5. Domestication and lowland adaptation of coastal preceramic maize from Paredones, Peru. Vallebueno-Estrada M; Hernández-Robles GG; González-Orozco E; Lopez-Valdivia I; Rosales Tham T; Vásquez Sánchez V; Swarts K; Dillehay TD; Vielle-Calzada JP; Montiel R Elife; 2023 Apr; 12():. PubMed ID: 37070964 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the teosinte transcriptome reveals adaptive sequence divergence during maize domestication. Huang J; Gao Y; Jia H; Zhang Z Mol Ecol Resour; 2016 Nov; 16(6):1465-1477. PubMed ID: 26990495 [TBL] [Abstract][Full Text] [Related]
8. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Zhang F; Wu J; Sade N; Wu S; Egbaria A; Fernie AR; Yan J; Qin F; Chen W; Brotman Y; Dai M Genome Biol; 2021 Sep; 22(1):260. PubMed ID: 34488839 [TBL] [Abstract][Full Text] [Related]
9. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings. Perkins AC; Lynch JP Ann Bot; 2021 Sep; 128(4):453-468. PubMed ID: 34120166 [TBL] [Abstract][Full Text] [Related]
10. Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. Samayoa LF; Olukolu BA; Yang CJ; Chen Q; Stetter MG; York AM; Sanchez-Gonzalez JJ; Glaubitz JC; Bradbury PJ; Romay MC; Sun Q; Yang J; Ross-Ibarra J; Buckler ES; Doebley JF; Holland JB PLoS Genet; 2021 Dec; 17(12):e1009797. PubMed ID: 34928949 [TBL] [Abstract][Full Text] [Related]
11. The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. Chen Q; Samayoa LF; Yang CJ; Bradbury PJ; Olukolu BA; Neumeyer MA; Romay MC; Sun Q; Lorant A; Buckler ES; Ross-Ibarra J; Holland JB; Doebley JF PLoS Genet; 2020 May; 16(5):e1008791. PubMed ID: 32407310 [TBL] [Abstract][Full Text] [Related]
12. Reshaping of the maize transcriptome by domestication. Swanson-Wagner R; Briskine R; Schaefer R; Hufford MB; Ross-Ibarra J; Myers CL; Tiffin P; Springer NM Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11878-83. PubMed ID: 22753482 [TBL] [Abstract][Full Text] [Related]
13. Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Dávila-Flores AM; DeWitt TJ; Bernal JS Oecologia; 2013 Dec; 173(4):1425-37. PubMed ID: 23868032 [TBL] [Abstract][Full Text] [Related]
14. The relevance of gene flow with wild relatives in understanding the domestication process. Moreno-Letelier A; Aguirre-Liguori JA; Piñero D; Vázquez-Lobo A; Eguiarte LE R Soc Open Sci; 2020 Apr; 7(4):191545. PubMed ID: 32431864 [TBL] [Abstract][Full Text] [Related]
16. The genetics of maize evolution. Doebley J Annu Rev Genet; 2004; 38():37-59. PubMed ID: 15568971 [TBL] [Abstract][Full Text] [Related]
17. The evolution of apical dominance in maize. Doebley J; Stec A; Hubbard L Nature; 1997 Apr; 386(6624):485-8. PubMed ID: 9087405 [TBL] [Abstract][Full Text] [Related]
18. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. Li K; Wen W; Alseekh S; Yang X; Guo H; Li W; Wang L; Pan Q; Zhan W; Liu J; Li Y; Wu X; Brotman Y; Willmitzer L; Li J; Fernie AR; Yan J Plant J; 2019 Jul; 99(2):216-230. PubMed ID: 30888713 [TBL] [Abstract][Full Text] [Related]
19. The role of cis regulatory evolution in maize domestication. Lemmon ZH; Bukowski R; Sun Q; Doebley JF PLoS Genet; 2014 Nov; 10(11):e1004745. PubMed ID: 25375861 [TBL] [Abstract][Full Text] [Related]
20. The origin of the naked grains of maize. Wang H; Nussbaum-Wagler T; Li B; Zhao Q; Vigouroux Y; Faller M; Bomblies K; Lukens L; Doebley JF Nature; 2005 Aug; 436(7051):714-9. PubMed ID: 16079849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]