BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31227600)

  • 1. An Integrative Analysis of Tumor Proteomic and Phosphoproteomic Profiles to Examine the Relationships Between Kinase Activity and Phosphorylation.
    Arshad OA; Danna V; Petyuk VA; Piehowski PD; Liu T; Rodland KD; McDermott JE
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S26-S36. PubMed ID: 31227600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of complex relationship between protein kinases and substrates during the cell cycle of HeLa cells by phosphoproteomic analysis.
    Yang XL; Li QR; Ning ZB; Zhang Y; Zeng R; Wu JR
    Proteomics; 2013 Apr; 13(8):1233-46. PubMed ID: 23322592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vitro Kinase-to-Phosphosite Database (iKiP-DB) Predicts Kinase Activity in Phosphoproteomic Datasets.
    Mari T; Mösbauer K; Wyler E; Landthaler M; Drosten C; Selbach M
    J Proteome Res; 2022 Jun; 21(6):1575-1587. PubMed ID: 35608653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring kinase activity from phosphoproteomic data: Tool comparison and recent applications.
    Piersma SR; Valles-Marti A; Rolfs F; Pham TV; Henneman AA; Jiménez CR
    Mass Spectrom Rev; 2024; 43(4):725-751. PubMed ID: 36156810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics Analysis of Global Proteomic and Phosphoproteomic Data Sets Revealed Activation of NEK2 and AURKA in Cancers.
    Deb B; Sengupta P; Sambath J; Kumar P
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32033228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Phosphosites to Kinases.
    Munk S; Refsgaard JC; Olsen JV; Jensen LJ
    Methods Mol Biol; 2016; 1355():307-21. PubMed ID: 26584935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning of Global Phosphoproteomic Profiles Enables Discrimination of Direct versus Indirect Kinase Substrates.
    Kanshin E; Giguère S; Jing C; Tyers M; Thibault P
    Mol Cell Proteomics; 2017 May; 16(5):786-798. PubMed ID: 28265048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions.
    Xue B; Jordan B; Rizvi S; Naegle KM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008681. PubMed ID: 33556051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate, high-coverage assignment of in vivo protein kinases to phosphosites from in vitro phosphoproteomic specificity data.
    Invergo BM
    PLoS Comput Biol; 2022 May; 18(5):e1010110. PubMed ID: 35560139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illuminating the dark phosphoproteome.
    Needham EJ; Parker BL; Burykin T; James DE; Humphrey SJ
    Sci Signal; 2019 Jan; 12(565):. PubMed ID: 30670635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.
    Domanova W; Krycer J; Chaudhuri R; Yang P; Vafaee F; Fazakerley D; Humphrey S; James D; Kuncic Z
    PLoS One; 2016; 11(6):e0157763. PubMed ID: 27336693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Phospho- and Phosphotyrosine Proteomics Identified Active Kinases and Phosphorylation Networks in Colorectal Cancer Cell Lines Resistant to Cetuximab.
    Abe Y; Nagano M; Kuga T; Tada A; Isoyama J; Adachi J; Tomonaga T
    Sci Rep; 2017 Sep; 7(1):10463. PubMed ID: 28874695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative proteomic and phosphoproteomic profiling of invasive micropapillary breast carcinoma.
    Chen X; Lin Y; Jin X; Zhang W; Guo W; Chen L; Chen M; Li Y; Fu F; Wang C
    J Proteomics; 2022 Apr; 257():104511. PubMed ID: 35139397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-depth phosphoproteomic analysis of royal jelly derived from western and eastern honeybee species.
    Han B; Fang Y; Feng M; Lu X; Huo X; Meng L; Wu B; Li J
    J Proteome Res; 2014 Dec; 13(12):5928-43. PubMed ID: 25265229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic analysis of protein phosphorylation networks from phosphoproteomic data.
    Song C; Ye M; Liu Z; Cheng H; Jiang X; Han G; Songyang Z; Tan Y; Wang H; Ren J; Xue Y; Zou H
    Mol Cell Proteomics; 2012 Oct; 11(10):1070-83. PubMed ID: 22798277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepKinZero: zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases.
    Deznabi I; Arabaci B; Koyutürk M; Tastan O
    Bioinformatics; 2020 Jun; 36(12):3652-3661. PubMed ID: 32044914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating proteomic and phosphoproteomic data for pathway analysis in breast cancer.
    Ren J; Wang B; Li J
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):130. PubMed ID: 30577793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells.
    Franchin C; Cesaro L; Salvi M; Millioni R; Iori E; Cifani P; James P; Arrigoni G; Pinna L
    Biochim Biophys Acta; 2015 Jun; 1854(6):609-23. PubMed ID: 25278378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometric phosphoproteome analysis of HIV-infected brain reveals novel phosphorylation sites and differential phosphorylation patterns.
    Uzasci L; Auh S; Cotter RJ; Nath A
    Proteomics Clin Appl; 2016 Feb; 10(2):126-35. PubMed ID: 26033855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis.
    Lin LL; Hsu CL; Hu CW; Ko SY; Hsieh HL; Huang HC; Juan HF
    BMC Genomics; 2015 Jul; 16(1):533. PubMed ID: 26187819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.