These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31227715)
1. Structural basis for the homotypic fusion of chlamydial inclusions by the SNARE-like protein IncA. Cingolani G; McCauley M; Lobley A; Bryer AJ; Wesolowski J; Greco DL; Lokareddy RK; Ronzone E; Perilla JR; Paumet F Nat Commun; 2019 Jun; 10(1):2747. PubMed ID: 31227715 [TBL] [Abstract][Full Text] [Related]
2. A Functional Core of IncA Is Required for Chlamydia trachomatis Inclusion Fusion. Weber MM; Noriea NF; Bauler LD; Lam JL; Sager J; Wesolowski J; Paumet F; Hackstadt T J Bacteriol; 2016 Apr; 198(8):1347-55. PubMed ID: 26883826 [TBL] [Abstract][Full Text] [Related]
3. Isolates of Chlamydia trachomatis that occupy nonfusogenic inclusions lack IncA, a protein localized to the inclusion membrane. Suchland RJ; Rockey DD; Bannantine JP; Stamm WE Infect Immun; 2000 Jan; 68(1):360-7. PubMed ID: 10603409 [TBL] [Abstract][Full Text] [Related]
4. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. Ronzone E; Paumet F PLoS One; 2013; 8(7):e69769. PubMed ID: 23936096 [TBL] [Abstract][Full Text] [Related]
5. An α-helical core encodes the dual functions of the chlamydial protein IncA. Ronzone E; Wesolowski J; Bauler LD; Bhardwaj A; Hackstadt T; Paumet F J Biol Chem; 2014 Nov; 289(48):33469-80. PubMed ID: 25324548 [TBL] [Abstract][Full Text] [Related]
6. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Hackstadt T; Scidmore-Carlson MA; Shaw EI; Fischer ER Cell Microbiol; 1999 Sep; 1(2):119-30. PubMed ID: 11207546 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA. Fields KA; Fischer E; Hackstadt T Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525 [TBL] [Abstract][Full Text] [Related]
8. Conservation of the biochemical properties of IncA from Chlamydia trachomatis and Chlamydia caviae: oligomerization of IncA mediates interaction between facing membranes. Delevoye C; Nilges M; Dautry-Varsat A; Subtil A J Biol Chem; 2004 Nov; 279(45):46896-906. PubMed ID: 15316015 [TBL] [Abstract][Full Text] [Related]
9. SNARE protein mimicry by an intracellular bacterium. Delevoye C; Nilges M; Dehoux P; Paumet F; Perrinet S; Dautry-Varsat A; Subtil A PLoS Pathog; 2008 Mar; 4(3):e1000022. PubMed ID: 18369472 [TBL] [Abstract][Full Text] [Related]
10. Development of a Proximity Labeling System to Map the Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569 [No Abstract] [Full Text] [Related]
11. Chlamydia trachomatis homotypic inclusion fusion is promoted by host microtubule trafficking. Richards TS; Knowlton AE; Grieshaber SS BMC Microbiol; 2013 Aug; 13():185. PubMed ID: 23919807 [TBL] [Abstract][Full Text] [Related]
12. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane. Olson MG; Ouellette SP; Rucks EA J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040 [TBL] [Abstract][Full Text] [Related]
13. Chlamydial antigens colocalize within IncA-laden fibers extending from the inclusion membrane into the host cytosol. Brown WJ; Skeiky YA; Probst P; Rockey DD Infect Immun; 2002 Oct; 70(10):5860-4. PubMed ID: 12228318 [TBL] [Abstract][Full Text] [Related]
15. Diversity within inc genes of clinical Chlamydia trachomatis variant isolates that occupy non-fusogenic inclusions. Rockey DD; Viratyosin W; Bannantine JP; Suchland RJ; Stamm WE Microbiology (Reading); 2002 Aug; 148(Pt 8):2497-2505. PubMed ID: 12177343 [TBL] [Abstract][Full Text] [Related]
16. Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron. Johnson CM; Fisher DJ PLoS One; 2013; 8(12):e83989. PubMed ID: 24391860 [TBL] [Abstract][Full Text] [Related]
17. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Gauliard E; Ouellette SP; Rueden KJ; Ladant D Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440 [TBL] [Abstract][Full Text] [Related]
18. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Bannantine JP; Griffiths RS; Viratyosin W; Brown WJ; Rockey DD Cell Microbiol; 2000 Feb; 2(1):35-47. PubMed ID: 11207561 [TBL] [Abstract][Full Text] [Related]
19. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478 [TBL] [Abstract][Full Text] [Related]
20. The hypothetical protein CT813 is localized in the Chlamydia trachomatis inclusion membrane and is immunogenic in women urogenitally infected with C. trachomatis. Chen C; Chen D; Sharma J; Cheng W; Zhong Y; Liu K; Jensen J; Shain R; Arulanandam B; Zhong G Infect Immun; 2006 Aug; 74(8):4826-40. PubMed ID: 16861671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]