These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31227770)
1. Open chromatin dynamics in prosensory cells of the embryonic mouse cochlea. Wilkerson BA; Chitsazan AD; VandenBosch LS; Wilken MS; Reh TA; Bermingham-McDonogh O Sci Rep; 2019 Jun; 9(1):9060. PubMed ID: 31227770 [TBL] [Abstract][Full Text] [Related]
2. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Ahmed M; Wong EY; Sun J; Xu J; Wang F; Xu PX Dev Cell; 2012 Feb; 22(2):377-90. PubMed ID: 22340499 [TBL] [Abstract][Full Text] [Related]
3. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea. Nishimura K; Noda T; Dabdoub A PLoS One; 2017; 12(1):e0170568. PubMed ID: 28118374 [TBL] [Abstract][Full Text] [Related]
4. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Jacques BE; Puligilla C; Weichert RM; Ferrer-Vaquer A; Hadjantonakis AK; Kelley MW; Dabdoub A Development; 2012 Dec; 139(23):4395-404. PubMed ID: 23132246 [TBL] [Abstract][Full Text] [Related]
5. Dual role for Sox2 in specification of sensory competence and regulation of Atoh1 function. Puligilla C; Kelley MW Dev Neurobiol; 2017 Jan; 77(1):3-13. PubMed ID: 27203669 [TBL] [Abstract][Full Text] [Related]
6. Notch prosensory effects in the Mammalian cochlea are partially mediated by Fgf20. Munnamalai V; Hayashi T; Bermingham-McDonogh O J Neurosci; 2012 Sep; 32(37):12876-84. PubMed ID: 22973011 [TBL] [Abstract][Full Text] [Related]
7. In vivo overactivation of the Notch signaling pathway in the developing cochlear epithelium. Tateya T; Sakamoto S; Imayoshi I; Kageyama R Hear Res; 2015 Sep; 327():209-17. PubMed ID: 26209882 [TBL] [Abstract][Full Text] [Related]
8. HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea. Smeti I; Watabe I; Savary E; Fontbonne A; Zine A PLoS One; 2014; 9(2):e88757. PubMed ID: 24551154 [TBL] [Abstract][Full Text] [Related]
9. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Dabdoub A; Puligilla C; Jones JM; Fritzsch B; Cheah KS; Pevny LH; Kelley MW Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18396-401. PubMed ID: 19011097 [TBL] [Abstract][Full Text] [Related]
10. Sox2 in the differentiation of cochlear progenitor cells. Kempfle JS; Turban JL; Edge AS Sci Rep; 2016 Mar; 6():23293. PubMed ID: 26988140 [TBL] [Abstract][Full Text] [Related]
11. Continued expression of GATA3 is necessary for cochlear neurosensory development. Duncan JS; Fritzsch B PLoS One; 2013; 8(4):e62046. PubMed ID: 23614009 [TBL] [Abstract][Full Text] [Related]
12. Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. Chai R; Xia A; Wang T; Jan TA; Hayashi T; Bermingham-McDonogh O; Cheng AG J Assoc Res Otolaryngol; 2011 Aug; 12(4):455-69. PubMed ID: 21472479 [TBL] [Abstract][Full Text] [Related]
13. Neurosensory development and cell fate determination in the human cochlea. Locher H; Frijns JH; van Iperen L; de Groot JC; Huisman MA; Chuva de Sousa Lopes SM Neural Dev; 2013 Oct; 8():20. PubMed ID: 24131517 [TBL] [Abstract][Full Text] [Related]
14. Rbpj regulates development of prosensory cells in the mammalian inner ear. Yamamoto N; Chang W; Kelley MW Dev Biol; 2011 May; 353(2):367-79. PubMed ID: 21420948 [TBL] [Abstract][Full Text] [Related]
15. Establishment of mice expressing EGFP in the placode-derived inner ear sensory cell lineage and FACS-array analysis focused on the regional specificity of the otocyst. Fujimoto C; Ozeki H; Uchijima Y; Suzukawa K; Mitani A; Fukuhara S; Nishiyama K; Kurihara Y; Kondo K; Aburatani H; Kaga K; Yamasoba T; Kurihara H J Comp Neurol; 2010 Dec; 518(23):4702-22. PubMed ID: 20963824 [TBL] [Abstract][Full Text] [Related]
16. The Key Transcription Factor Expression in the Developing Vestibular and Auditory Sensory Organs: A Comprehensive Comparison of Spatial and Temporal Patterns. Liu S; Wang Y; Lu Y; Li W; Liu W; Ma J; Sun F; Li M; Chen ZY; Su K; Li W Neural Plast; 2018; 2018():7513258. PubMed ID: 30410537 [TBL] [Abstract][Full Text] [Related]
17. The Notch Ligand Jagged1 Is Required for the Formation, Maintenance, and Survival of Hensen's Cells in the Mouse Cochlea. Chrysostomou E; Zhou L; Darcy YL; Graves KA; Doetzlhofer A; Cox BC J Neurosci; 2020 Dec; 40(49):9401-9413. PubMed ID: 33127852 [TBL] [Abstract][Full Text] [Related]
18. GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Luo XJ; Deng M; Xie X; Huang L; Wang H; Jiang L; Liang G; Hu F; Tieu R; Chen R; Gan L Hum Mol Genet; 2013 Sep; 22(18):3609-23. PubMed ID: 23666531 [TBL] [Abstract][Full Text] [Related]
19. SoxC transcription factors shape the epigenetic landscape to establish competence for sensory differentiation in the mammalian organ of Corti. Wang X; Llamas J; Trecek T; Shi T; Tao L; Makmura W; Crump JG; Segil N; Gnedeva K Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2301301120. PubMed ID: 37585469 [TBL] [Abstract][Full Text] [Related]
20. Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos. Haugas M; Lilleväli K; Salminen M Hear Res; 2012 Jan; 283(1-2):151-61. PubMed ID: 22094003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]