BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31227844)

  • 1. Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers.
    Faron A; Sichtermann T; Teichert N; Luetkens JA; Keulers A; Nikoubashman O; Freiherr J; Mpotsaris A; Wiesmann M
    Clin Neuroradiol; 2020 Sep; 30(3):591-598. PubMed ID: 31227844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based platform performs high detection sensitivity of intracranial aneurysms in 3D brain TOF-MRA: An external clinical validation study.
    Li Y; Zhang H; Sun Y; Fan Q; Wang L; Ji C; HuiGu ; Chen B; Zhao S; Wang D; Yu P; Li J; Yang S; Zhang C; Wang X
    Int J Med Inform; 2024 Aug; 188():105487. PubMed ID: 38761459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.
    Sichtermann T; Faron A; Sijben R; Teichert N; Freiherr J; Wiesmann M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):25-32. PubMed ID: 30573461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Added diagnostic values of three-dimensional high-resolution proton density-weighted magnetic resonance imaging for unruptured intracranial aneurysms in the circle-of-Willis: Comparison with time-of-flight magnetic resonance angiography.
    Yim Y; Jung SC; Kim JY; Kim SO; Kim BJ; Lee DH; Park W; Park JC; Ahn JS
    PLoS One; 2020; 15(12):e0243235. PubMed ID: 33270756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net.
    Claux F; Baudouin M; Bogey C; Rouchaud A
    J Neuroradiol; 2023 Feb; 50(1):9-15. PubMed ID: 35307554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography.
    Lehnen NC; Schievelkamp AH; Gronemann C; Haase R; Krause I; Gansen M; Fleckenstein T; Dorn F; Radbruch A; Paech D
    Neuroradiology; 2024 Jul; 66(7):1153-1160. PubMed ID: 38619571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning assistance increases the detection sensitivity of radiologists for secondary intracranial aneurysms in subarachnoid hemorrhage.
    Pennig L; Hoyer UCI; Krauskopf A; Shahzad R; Jünger ST; Thiele F; Laukamp KR; Grunz JP; Perkuhn M; Schlamann M; Kabbasch C; Borggrefe J; Goertz L
    Neuroradiology; 2021 Dec; 63(12):1985-1994. PubMed ID: 33837806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning for Detection of Intracranial Aneurysms from Computed Tomography Angiography Images.
    Liu X; Mao J; Sun N; Yu X; Chai L; Tian Y; Wang J; Liang J; Tao H; Yuan L; Lu J; Wang Y; Zhang B; Wu K; Wang Y; Chen M; Wang Z; Lu L
    J Digit Imaging; 2023 Feb; 36(1):114-123. PubMed ID: 36085330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA.
    Ham S; Seo J; Yun J; Bae YJ; Kim T; Sunwoo L; Yoo S; Jung SC; Kim JW; Kim N
    Sci Rep; 2023 Jul; 13(1):12018. PubMed ID: 37491504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning framework for intracranial aneurysms automatic segmentation and detection on magnetic resonance T1 images.
    Qu J; Niu H; Li Y; Chen T; Peng F; Xia J; He X; Xu B; Chen X; Li R; Liu A; Zhang X; Li C
    Eur Radiol; 2024 May; 34(5):2838-2848. PubMed ID: 37843574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Follow-up of intracranial aneurysms treated with stent-assisted coiling: Comparison of contrast-enhanced MRA, time-of-flight MRA, and digital subtraction angiography.
    Marciano D; Soize S; Metaxas G; Portefaix C; Pierot L
    J Neuroradiol; 2017 Feb; 44(1):44-51. PubMed ID: 27836654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography.
    Chen M; Geng C; Wang D; Zhou Z; Di R; Li F; Piao S; Zhang J; Li Y; Dai Y
    Biomed Eng Online; 2022 Sep; 21(1):71. PubMed ID: 36163014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic accuracy of 3D time-of-flight MR angiography compared with digital subtraction angiography for follow-up of coiled intracranial aneurysms: influence of aneurysm size.
    Deutschmann HA; Augustin M; Simbrunner J; Unger B; Schoellnast H; Fritz GA; Klein GE
    AJNR Am J Neuroradiol; 2007 Apr; 28(4):628-34. PubMed ID: 17416811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study.
    Lehnen NC; Haase R; Schmeel FC; Vatter H; Dorn F; Radbruch A; Paech D
    AJNR Am J Neuroradiol; 2022 Dec; 43(12):1700-1705. PubMed ID: 36357154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance.
    Joo B; Ahn SS; Yoon PH; Bae S; Sohn B; Lee YE; Bae JH; Park MS; Choi HS; Lee SK
    Eur Radiol; 2020 Nov; 30(11):5785-5793. PubMed ID: 32474633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immediate intracranial aneurysm occlusion after embolization with detachable coils: a comparison between MR angiography and intra-arterial digital subtraction angiography.
    Lubicz B; Levivier M; Sadeghi N; Emonts P; Balériaux D
    J Neuroradiol; 2007 Jul; 34(3):190-7. PubMed ID: 17582496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.