These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Leitão AL; Enguita FJ Microbiol Res; 2014; 169(9-10):652-65. PubMed ID: 24636745 [TBL] [Abstract][Full Text] [Related]
27. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Nisa H; Kamili AN; Nawchoo IA; Shafi S; Shameem N; Bandh SA Microb Pathog; 2015 May; 82():50-9. PubMed ID: 25865953 [TBL] [Abstract][Full Text] [Related]
28. New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Carter Z; Delneri D Yeast; 2010 Sep; 27(9):765-75. PubMed ID: 20641014 [TBL] [Abstract][Full Text] [Related]
29. Ecology, metabolite production, and substrate utilization in endophytic fungi. Petrini O; Sieber TN; Toti L; Viret O Nat Toxins; 1992; 1(3):185-96. PubMed ID: 1344919 [TBL] [Abstract][Full Text] [Related]
30. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. Smedsgaard J; Nielsen J J Exp Bot; 2005 Jan; 56(410):273-86. PubMed ID: 15618299 [TBL] [Abstract][Full Text] [Related]
31. Fungal endophytes: unique plant inhabitants with great promises. Aly AH; Debbab A; Proksch P Appl Microbiol Biotechnol; 2011 Jun; 90(6):1829-45. PubMed ID: 21523479 [TBL] [Abstract][Full Text] [Related]
32. Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Chagnon PL; U'Ren JM; Miadlikowska J; Lutzoni F; Arnold AE Oecologia; 2016 Jan; 180(1):181-91. PubMed ID: 26420599 [TBL] [Abstract][Full Text] [Related]
33. Regulation of secondary metabolism in filamentous fungi. Yu JH; Keller N Annu Rev Phytopathol; 2005; 43():437-58. PubMed ID: 16078891 [TBL] [Abstract][Full Text] [Related]
34. New tools for the genetic manipulation of filamentous fungi. Kück U; Hoff B Appl Microbiol Biotechnol; 2010 Mar; 86(1):51-62. PubMed ID: 20107987 [TBL] [Abstract][Full Text] [Related]
35. Plasmids for increased efficiency of vector construction and genetic engineering in filamentous fungi. Schoberle TJ; Nguyen-Coleman CK; May GS Fungal Genet Biol; 2013; 58-59():1-9. PubMed ID: 23867711 [TBL] [Abstract][Full Text] [Related]
36. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. Lind AL; Wisecaver JH; Lameiras C; Wiemann P; Palmer JM; Keller NP; Rodrigues F; Goldman GH; Rokas A PLoS Biol; 2017 Nov; 15(11):e2003583. PubMed ID: 29149178 [TBL] [Abstract][Full Text] [Related]
37. Flexible gateway constructs for functional analyses of genes in plant pathogenic fungi. Mehrabi R; Mirzadi Gohari A; da Silva GF; Steinberg G; Kema GH; de Wit PJ Fungal Genet Biol; 2015 Jun; 79():186-92. PubMed ID: 26092806 [TBL] [Abstract][Full Text] [Related]
38. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Zhao Y; Lim J; Xu J; Yu JH; Zheng W Mol Microbiol; 2020 May; 113(5):872-882. PubMed ID: 31968137 [TBL] [Abstract][Full Text] [Related]
39. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. Kusari S; Pandey SP; Spiteller M Phytochemistry; 2013 Jul; 91():81-7. PubMed ID: 22954732 [TBL] [Abstract][Full Text] [Related]