BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31228156)

  • 21. Novel fluorescence techniques to quantitate renal cell biology.
    Shroff UN; Schiessl IM; Gyarmati G; Riquier-Brison A; Peti-Peterdi J
    Methods Cell Biol; 2019; 154():85-107. PubMed ID: 31493823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-Photon Microscopy.
    Sanderson J
    Curr Protoc; 2023 Jan; 3(1):e634. PubMed ID: 36706245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of in vivo imaging in Head and Neck cancer management.
    Mali SB
    Oral Oncol; 2023 Nov; 146():106575. PubMed ID: 37741020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging Glioma Progression by Intravital Microscopy.
    Stanchi F; Matsumoto K; Gerhardt H
    Methods Mol Biol; 2019; 1862():227-243. PubMed ID: 30315471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intravital Imaging of Human Melanoma Cells in the Mouse Ear Skin by Two-Photon Excitation Microscopy.
    Bentolila NY; Barnhill RL; Lugassy C; Bentolila LA
    Methods Mol Biol; 2018; 1755():223-232. PubMed ID: 29671273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-Photon Intravital Fluorescence Lifetime Imaging of the Kidney Reveals Cell-Type Specific Metabolic Signatures.
    Hato T; Winfree S; Day R; Sandoval RM; Molitoris BA; Yoder MC; Wiggins RC; Zheng Y; Dunn KW; Dagher PC
    J Am Soc Nephrol; 2017 Aug; 28(8):2420-2430. PubMed ID: 28250053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long term intravital single cell tracking under multiphoton microscopy.
    Liang Y; Walczak P
    J Neurosci Methods; 2021 Feb; 349():109042. PubMed ID: 33340557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intravital imaging of the kidney using multiparameter multiphoton microscopy.
    Dunn KW; Sandoval RM; Molitoris BA
    Nephron Exp Nephrol; 2003; 94(1):e7-11. PubMed ID: 12806182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in renal (patho)physiology using multiphoton microscopy.
    Sipos A; Toma I; Kang JJ; Rosivall L; Peti-Peterdi J
    Kidney Int; 2007 Nov; 72(10):1188-91. PubMed ID: 17667980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advances in intravital imaging of dynamic biological systems.
    Kikuta J; Ishii M
    J Pharmacol Sci; 2012; 119(3):193-7. PubMed ID: 22786560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intravital Microscopy in Atherosclerosis Research.
    Wissmeyer G; Kassab MB; Kawamura Y; Aguirre AD; Jaffer FA
    Methods Mol Biol; 2022; 2419():645-658. PubMed ID: 35237994
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-Photon Fluorescence Microscopy and Applications in Angiogenesis and Related Molecular Events.
    Lee M; Kannan S; Muniraj G; Rosa V; Lu WF; Fuh JYH; Sriram G; Cao T
    Tissue Eng Part B Rev; 2022 Aug; 28(4):926-937. PubMed ID: 34541887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Principles of multiphoton microscopy.
    Dunn KW; Young PA
    Nephron Exp Nephrol; 2006; 103(2):e33-40. PubMed ID: 16543762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intravital observation of high-scattering and dense-labeling hepatic tissues using multi-photon fluorescence microscopy.
    Chen R; Peng S; Xia Q; Wu T; Zheng J; Qin H; Qian J
    J Biophotonics; 2024 Jun; 17(6):e202300477. PubMed ID: 38616104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors.
    Matsuda M; Terai K
    Pathol Int; 2020 Jul; 70(7):379-390. PubMed ID: 32270554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging.
    Centonze VE; White JG
    Biophys J; 1998 Oct; 75(4):2015-24. PubMed ID: 9746543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization.
    Xiang J; Cai X; Lou X; Feng G; Min X; Luo W; He B; Goh CC; Ng LG; Zhou J; Zhao Z; Liu B; Tang BZ
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14965-74. PubMed ID: 26094687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simple and Robust Intravital Microscopy Procedures in Hybrid TIE2GFP-BALB/c Transgenic Mice.
    Sofias AM; Åslund AKO; Hagen N; Grendstad K; Hak S
    Mol Imaging Biol; 2020 Jun; 22(3):486-493. PubMed ID: 31650483
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    Alex A; Chaney EJ; Žurauskas M; Criley JM; Spillman DR; Hutchison PB; Li J; Marjanovic M; Frey S; Arp Z; Boppart SA
    Exp Dermatol; 2020 Oct; 29(10):953-960. PubMed ID: 33311854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.