These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31228181)
1. KinomeX: a web application for predicting kinome-wide polypharmacology effect of small molecules. Li Z; Li X; Liu X; Fu Z; Xiong Z; Wu X; Tan X; Zhao J; Zhong F; Wan X; Luo X; Chen K; Jiang H; Zheng M Bioinformatics; 2019 Dec; 35(24):5354-5356. PubMed ID: 31228181 [TBL] [Abstract][Full Text] [Related]
2. Deep Learning Enhancing Kinome-Wide Polypharmacology Profiling: Model Construction and Experiment Validation. Li X; Li Z; Wu X; Xiong Z; Yang T; Fu Z; Liu X; Tan X; Zhong F; Wan X; Wang D; Ding X; Yang R; Hou H; Li C; Liu H; Chen K; Jiang H; Zheng M J Med Chem; 2020 Aug; 63(16):8723-8737. PubMed ID: 31364850 [TBL] [Abstract][Full Text] [Related]
3. KinomeMETA: a web platform for kinome-wide polypharmacology profiling with meta-learning. Li Z; Qu N; Zhou J; Sun J; Ren Q; Meng J; Wang G; Wang R; Liu J; Chen Y; Zhang S; Zheng M; Li X Nucleic Acids Res; 2024 Jul; 52(W1):W489-W497. PubMed ID: 38752486 [TBL] [Abstract][Full Text] [Related]
4. Kinome-Wide Virtual Screening by Multi-Task Deep Learning. Hu J; Allen BK; Stathias V; Ayad NG; Schürer SC Int J Mol Sci; 2024 Feb; 25(5):. PubMed ID: 38473785 [TBL] [Abstract][Full Text] [Related]
5. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform. Ma W; Hu J; Chen Z; Ai Y; Zhang Y; Dong K; Meng X; Liu L J Chem Inf Model; 2024 Oct; 64(19):7273-7290. PubMed ID: 39320984 [TBL] [Abstract][Full Text] [Related]
6. KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling. Ren Q; Qu N; Sun J; Zhou J; Liu J; Ni L; Tong X; Zhang Z; Kong X; Wen Y; Wang Y; Wang D; Luo X; Zhang S; Zheng M; Li X Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38113075 [TBL] [Abstract][Full Text] [Related]
7. Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach. Bao L; Wang Z; Wu Z; Luo H; Yu J; Kang Y; Cao D; Hou T Acta Pharm Sin B; 2023 Jan; 13(1):54-67. PubMed ID: 36815050 [TBL] [Abstract][Full Text] [Related]
8. DRUDIT: web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets. Lauria A; Mannino S; Gentile C; Mannino G; Martorana A; Peri D Bioinformatics; 2020 Mar; 36(5):1562-1569. PubMed ID: 31605102 [TBL] [Abstract][Full Text] [Related]
10. Computational polypharmacology: a new paradigm for drug discovery. Chaudhari R; Tan Z; Huang B; Zhang S Expert Opin Drug Discov; 2017 Mar; 12(3):279-291. PubMed ID: 28067061 [TBL] [Abstract][Full Text] [Related]
11. LigAdvisor: a versatile and user-friendly web-platform for drug design. Pinzi L; Tinivella A; Gagliardelli L; Beneventano D; Rastelli G Nucleic Acids Res; 2021 Jul; 49(W1):W326-W335. PubMed ID: 34023895 [TBL] [Abstract][Full Text] [Related]
12. In Silico Target Prediction for Small Molecules. Byrne R; Schneider G Methods Mol Biol; 2019; 1888():273-309. PubMed ID: 30519953 [TBL] [Abstract][Full Text] [Related]
13. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome. Miljković F; Bajorath J J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884 [TBL] [Abstract][Full Text] [Related]
14. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Gong J; Cai C; Liu X; Ku X; Jiang H; Gao D; Li H Bioinformatics; 2013 Jul; 29(14):1827-9. PubMed ID: 23712658 [TBL] [Abstract][Full Text] [Related]
15. PATHOME-Drug: a subpathway-based polypharmacology drug-repositioning method. Nam S; Lee S; Park S; Lee J; Park A; Kim YH; Park T Bioinformatics; 2022 Jan; 38(2):444-452. PubMed ID: 34515762 [TBL] [Abstract][Full Text] [Related]
16. Coping with polypharmacology by computational medicinal chemistry. Schneider G; Reker D; Rodrigues T; Schneider P Chimia (Aarau); 2014 Sep; 68(9):648-53. PubMed ID: 25437786 [TBL] [Abstract][Full Text] [Related]
17. Delineation of Polypharmacology across the Human Structural Kinome Using a Functional Site Interaction Fingerprint Approach. Zhao Z; Xie L; Xie L; Bourne PE J Med Chem; 2016 May; 59(9):4326-41. PubMed ID: 26929980 [TBL] [Abstract][Full Text] [Related]
18. Learning with multiple pairwise kernels for drug bioactivity prediction. Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975 [TBL] [Abstract][Full Text] [Related]
19. The Human Kinome Targeted by FDA Approved Multi-Target Drugs and Combination Products: A Comparative Study from the Drug-Target Interaction Network Perspective. Li YH; Wang PP; Li XX; Yu CY; Yang H; Zhou J; Xue WW; Tan J; Zhu F PLoS One; 2016; 11(11):e0165737. PubMed ID: 27828998 [TBL] [Abstract][Full Text] [Related]
20. QuartataWeb: Integrated Chemical-Protein-Pathway Mapping for Polypharmacology and Chemogenomics. Li H; Pei F; Taylor DL; Bahar I Bioinformatics; 2020 Jun; 36(12):3935-3937. PubMed ID: 32221612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]