These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31228207)

  • 1. Evaluating intermuscular Golgi tendon organ feedback with twitch contractions.
    Lyle MA; Nichols TR
    J Physiol; 2019 Sep; 597(17):4627-4642. PubMed ID: 31228207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of stimulation of Golgi tendon organs and spindle receptors from hindlimb extensor muscles on supraspinal descending inhibitory mechanisms.
    Magherini PC; Pompeiano O; Seguin JJ
    Arch Ital Biol; 1973 Feb; 111(1):24-57. PubMed ID: 18843825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle spindle discharge in response to contraction of single motor units.
    McKeon B; Burke D
    J Neurophysiol; 1983 Feb; 49(2):291-302. PubMed ID: 6220135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat.
    Nichols TR
    J Neurophysiol; 1999 Feb; 81(2):467-78. PubMed ID: 10036251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quadriceps muscle stimulation evokes heteronymous inhibition onto soleus with limited Ia activation compared to femoral nerve stimulation.
    Lyle MA; Cuadra C; Wolf SL
    Exp Brain Res; 2022 Sep; 240(9):2375-2388. PubMed ID: 35881156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
    Kistemaker DA; Van Soest AJ; Wong JD; Kurtzer I; Gribble PL
    J Neurophysiol; 2013 Feb; 109(4):1126-39. PubMed ID: 23100138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity.
    Lyle MA; Prilutsky BI; Gregor RJ; Abelew TA; Nichols TR
    J Neurophysiol; 2016 Sep; 116(3):1055-67. PubMed ID: 27306676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of isolated Golgi tendon organs of the cat to muscle contraction and electrical stimulation.
    Fukami Y
    J Physiol; 1981 Sep; 318():429-43. PubMed ID: 7320899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation and estimation of muscle spindle and tension receptor populations by vibration of the biceps muscle in the frog.
    Giszter SF; Kargo WJ
    Arch Ital Biol; 2002 Oct; 140(4):283-94. PubMed ID: 12228981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in PAD patterns of group I muscle afferents after a peripheral nerve crush.
    Enríquez M; Jiménez I; Rudomin P
    Exp Brain Res; 1996; 107(3):405-20. PubMed ID: 8821382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced motor unit activation of muscle spindles and tendon organs in the immobilized cat hindlimb.
    Nordstrom MA; Enoka RM; Reinking RM; Callister RC; Stuart DG
    J Appl Physiol (1985); 1995 Mar; 78(3):901-13. PubMed ID: 7775335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tendon organs of cat medial gastrocnemius: responses to active and passive forces as a function of muscle length.
    Stephens JA; Reinking RM; Stuart DG
    J Neurophysiol; 1975 Sep; 38(5):1217-31. PubMed ID: 1177014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Further evidence for synaptic actions of muscle spindle secondaries in the middle lumbar segments of the cat spinal cord.
    Harrison PJ; Jami L; Jankowska E
    J Physiol; 1988 Aug; 402():671-86. PubMed ID: 2976827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two groups of Golgi tendon organs in cat tibial anterior muscle identified from the discharge frequency recorded under a ramp-and-hold stretch.
    Schäfer SS; Berkelmann B; Schuppan K
    Brain Res; 1999 Nov; 846(2):210-8. PubMed ID: 10556638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Closely coupled excitation of gamma-motoneurones by group III Muscle afferents with low mechanical threshold in the cat.
    Ellaway PH; Murphy PR; Tripathi A
    J Physiol; 1982 Oct; 331():481-98. PubMed ID: 7153913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MS and GTO proprioceptor subtypes in the molecular genetic era: Opportunities for new advances and perspectives.
    de Nooij JC
    Curr Opin Neurobiol; 2022 Oct; 76():102597. PubMed ID: 35792479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretch sensitization of human muscle spindles.
    Edin BB; Vallbo AB
    J Physiol; 1988 Jun; 400():101-11. PubMed ID: 2971105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Role for Sensory end Organ-Derived Signals in Regulating Muscle Spindle Proprioceptor Phenotype.
    Wu D; Schieren I; Qian Y; Zhang C; Jessell TM; de Nooij JC
    J Neurosci; 2019 May; 39(22):4252-4267. PubMed ID: 30926747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents.
    Fetz EE; Jankowska E; Johannisson T; Lipski J
    J Physiol; 1979 Aug; 293():173-95. PubMed ID: 159356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of intermuscular inhibitory force feedback across cat hindlimbs suggest a flexible system for regulating whole limb mechanics.
    Lyle MA; Nichols TR
    J Neurophysiol; 2018 Feb; 119(2):668-678. PubMed ID: 29142095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.