These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31228272)

  • 41. Long-term potentiation as a substrate for memory: evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning.
    Goosens KA; Maren S
    Hippocampus; 2002; 12(5):592-9. PubMed ID: 12440575
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Individual differences in fear-potentiated startle as a function of resting heart rate variability: implications for panic disorder.
    Melzig CA; Weike AI; Hamm AO; Thayer JF
    Int J Psychophysiol; 2009 Feb; 71(2):109-17. PubMed ID: 18708100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pavlovian fear memory circuits and phenotype models of PTSD.
    Johnson LR; McGuire J; Lazarus R; Palmer AA
    Neuropharmacology; 2012 Feb; 62(2):638-46. PubMed ID: 21782833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fear conditioning in virtual reality contexts: a new tool for the study of anxiety.
    Baas JM; Nugent M; Lissek S; Pine DS; Grillon C
    Biol Psychiatry; 2004 Jun; 55(11):1056-60. PubMed ID: 15158423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: the case for conditioned overgeneralization.
    Lissek S
    Depress Anxiety; 2012 Apr; 29(4):257-63. PubMed ID: 22447565
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression.
    Ponder CA; Kliethermes CL; Drew MR; Muller J; Das K; Risbrough VB; Crabbe JC; Gilliam TC; Palmer AA
    Genes Brain Behav; 2007 Nov; 6(8):736-49. PubMed ID: 17309658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pavlovian or associative sensitization and its biological significance.
    Domjan M; Fanselow MS
    Neurosci Biobehav Rev; 2024 Aug; 163():105790. PubMed ID: 38960076
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect.
    Davis M
    Pharmacol Ther; 1990; 47(2):147-65. PubMed ID: 2203068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning.
    Phillips RG; LeDoux JE
    Behav Neurosci; 1992 Apr; 106(2):274-85. PubMed ID: 1590953
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential transcriptional response to nonassociative and associative components of classical fear conditioning in the amygdala and hippocampus.
    Keeley MB; Wood MA; Isiegas C; Stein J; Hellman K; Hannenhalli S; Abel T
    Learn Mem; 2006; 13(2):135-42. PubMed ID: 16547164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Behavioral verification of associative learning in whiskers-related fear conditioning in mice.
    Cybulska-Kłosowicz A
    Acta Neurobiol Exp (Wars); 2016; 76(2):87-97. PubMed ID: 27373946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning pain-related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain.
    Gramsch C; Kattoor J; Icenhour A; Forsting M; Schedlowski M; Gizewski ER; Elsenbruch S
    Neurobiol Learn Mem; 2014 Dec; 116():36-45. PubMed ID: 25128878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction of trace but not delay eyeblink conditioning in panic disorder.
    Grillon C; Lissek S; McDowell D; Levenson J; Pine DS
    Am J Psychiatry; 2007 Feb; 164(2):283-9. PubMed ID: 17267792
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A priori expectancy bias in patients with panic disorder.
    Wiedemann G; Pauli P; Dengler W
    J Anxiety Disord; 2001; 15(5):401-12. PubMed ID: 11583073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Arousal-related associative response characteristics of dorsal lateral geniculate nucleus neurons during acoustic Pavlovian fear conditioning.
    Cain ME; Kapp BS; Puryear CB
    Behav Neurosci; 2000 Apr; 114(2):241-53. PubMed ID: 10832786
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamics of defensive response mobilization during repeated terminations of exposure to increasing interoceptive threat.
    Benke C; Krause E; Hamm AO; Pané-Farré CA
    Int J Psychophysiol; 2018 Sep; 131():44-56. PubMed ID: 28947266
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural mechanisms of human temporal fear conditioning.
    Harnett NG; Shumen JR; Wagle PA; Wood KH; Wheelock MD; Baños JH; Knight DC
    Neurobiol Learn Mem; 2016 Dec; 136():97-104. PubMed ID: 27693343
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning.
    Miskovic V; Keil A
    Psychophysiology; 2012 Sep; 49(9):1230-41. PubMed ID: 22891639
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Panic Disorder Comorbidity with Medical Conditions and Treatment Implications.
    Meuret AE; Kroll J; Ritz T
    Annu Rev Clin Psychol; 2017 May; 13():209-240. PubMed ID: 28375724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies.
    Fullana MA; Harrison BJ; Soriano-Mas C; Vervliet B; Cardoner N; Àvila-Parcet A; Radua J
    Mol Psychiatry; 2016 Apr; 21(4):500-8. PubMed ID: 26122585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.