BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 31228407)

  • 1. Exoskeletons for Personal Use After Spinal Cord Injury.
    Kandilakis C; Sasso-Lance E
    Arch Phys Med Rehabil; 2021 Feb; 102(2):331-337. PubMed ID: 31228407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
    Ehrlich-Jones L; Crown DS; Kinnett-Hopkins D; Field-Fote E; Furbish C; Mummidisetty CK; Bond RA; Forrest G; Jayaraman A; Heinemann AW
    Arch Phys Med Rehabil; 2021 Feb; 102(2):203-215. PubMed ID: 33171130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Users with spinal cord injury experience of robotic Locomotor exoskeletons: a qualitative study of the benefits, limitations, and recommendations.
    Kinnett-Hopkins D; Mummidisetty CK; Ehrlich-Jones L; Crown D; Bond RA; Applebaum MH; Jayaraman A; Furbish C; Forrest G; Field-Fote E; Heinemann AW
    J Neuroeng Rehabil; 2020 Sep; 17(1):124. PubMed ID: 32917287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Appraisals of robotic locomotor exoskeletons for gait: focus group insights from potential users with spinal cord injuries.
    Heinemann AW; Kinnett-Hopkins D; Mummidisetty CK; Bond RA; Ehrlich-Jones L; Furbish C; Field-Fote E; Jayaraman A
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):762-772. PubMed ID: 32255369
    [No Abstract]   [Full Text] [Related]  

  • 10. Design recommendations for exoskeletons: Perspectives of individuals with spinal cord injury.
    van Silfhout L; Hosman AJF; van de Meent H; Bartels RHMA; Edwards MJR
    J Spinal Cord Med; 2023 Mar; 46(2):256-261. PubMed ID: 34062111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highest ambulatory speed using Lokomat gait training for individuals with a motor-complete spinal cord injury: a clinical pilot study.
    van Silfhout L; Váňa Z; Pĕtioký J; Edwards MJR; Bartels RHMA; van de Meent H; Hosman AJF
    Acta Neurochir (Wien); 2020 Apr; 162(4):951-956. PubMed ID: 31873795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review.
    Mekki M; Delgado AD; Fry A; Putrino D; Huang V
    Neurotherapeutics; 2018 Jul; 15(3):604-617. PubMed ID: 29987763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study.
    Postol N; Spratt NJ; Bivard A; Marquez J
    J Neuroeng Rehabil; 2021 Dec; 18(1):180. PubMed ID: 34953501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rehabilitation of traumatic spinal cord injury with lower limb exoskeleton].
    Tóth L; Bors V; Pallag A; Pinczker V; Dóczi T; Cserháti P; Shenker B; Büki A; Nyitrai M; Maróti P
    Orv Hetil; 2020 Jul; 161(29):1200-1207. PubMed ID: 32628619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers.
    Heinemann AW; Jayaraman A; Mummidisetty CK; Spraggins J; Pinto D; Charlifue S; Tefertiller C; Taylor HB; Chang SH; Stampas A; Furbish CL; Field-Fote EC
    J Neurol Phys Ther; 2018 Oct; 42(4):256-267. PubMed ID: 30199518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.