These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31228473)

  • 1. Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles.
    de Ruiter MV; van der Hee RM; Driessen AJM; Keurhorst ED; Hamid M; Cornelissen JJLM
    J Control Release; 2019 Aug; 307():342-354. PubMed ID: 31228473
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Karan S; Durán-Meza AL; Chapman A; Tanimoto C; Chan SK; Knobler CM; Gelbart WM; Steinmetz NF
    Mol Pharm; 2024 Jun; 21(6):2727-2739. PubMed ID: 38709860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligonucleotide Length-Dependent Formation of Virus-Like Particles.
    Maassen SJ; de Ruiter MV; Lindhoud S; Cornelissen JJLM
    Chemistry; 2018 May; 24(29):7456-7463. PubMed ID: 29518273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations.
    Hassani-Mehraban A; Creutzburg S; van Heereveld L; Kormelink R
    BMC Biotechnol; 2015 Aug; 15():80. PubMed ID: 26311254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting fluorescent polymers to probe the self-assembly of virus-like particles.
    Cadena-Nava RD; Hu Y; Garmann RF; Ng B; Zelikin AN; Knobler CM; Gelbart WM
    J Phys Chem B; 2011 Mar; 115(10):2386-91. PubMed ID: 21338131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient strategy for the heterologous expression and purification of soluble Cowpea chlorotic mottle virus capsid protein and in vitro pH-dependent assembly of virus-like particles.
    Díaz-Valle A; García-Salcedo YM; Chávez-Calvillo G; Silva-Rosales L; Carrillo-Tripp M
    J Virol Methods; 2015 Dec; 225():23-9. PubMed ID: 26342905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles.
    Biddlecome A; Habte HH; McGrath KM; Sambanthamoorthy S; Wurm M; Sykora MM; Knobler CM; Lorenz IC; Lasaro M; Elbers K; Gelbart WM
    PLoS One; 2019; 14(6):e0215031. PubMed ID: 31163034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. VLPs Derived from the CCMV Plant Virus Can Directly Transfect and Deliver Heterologous Genes for Translation into Mammalian Cells.
    Villagrana-Escareño MV; Reynaga-Hernández E; Galicia-Cruz OG; Durán-Meza AL; De la Cruz-González V; Hernández-Carballo CY; Ruíz-García J
    Biomed Res Int; 2019; 2019():4630891. PubMed ID: 31781617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Virus-Like Particles for RNA Delivery.
    Ramirez-Acosta K; Loredo-García E; Herrera-Hernandez MM; Cadena-Nava RD
    Methods Mol Biol; 2024; 2822():387-410. PubMed ID: 38907930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of Viral Capsid Proteins Driven by Compressible Nanobubbles.
    Zhang M; Cao S; Liu A; Cornelissen JJLM; Lemay SG
    J Phys Chem Lett; 2020 Dec; 11(24):10421-10424. PubMed ID: 33269936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Packaging DNA Origami into Viral Protein Cages.
    Linko V; Mikkilä J; Kostiainen MA
    Methods Mol Biol; 2018; 1776():267-277. PubMed ID: 29869248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virus-Like Particles Produced Using the Brome Mosaic Virus Recombinant Capsid Protein Expressed in a Bacterial System.
    Strugała A; Jagielski J; Kamel K; Nowaczyk G; Radom M; Figlerowicz M; Urbanowicz A
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simple RNA-DNA Scaffold Templates the Assembly of Monofunctional Virus-Like Particles.
    Garmann RF; Sportsman R; Beren C; Manoharan VN; Knobler CM; Gelbart WM
    J Am Chem Soc; 2015 Jun; 137(24):7584-7. PubMed ID: 26043403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM reconstructions of BMV-derived virus-like particles reveal assembly defects in the icosahedral lattice structure.
    Ruszkowski M; Strugala A; Indyka P; Tresset G; Figlerowicz M; Urbanowicz A
    Nanoscale; 2022 Feb; 14(8):3224-3233. PubMed ID: 35156989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions.
    Garmann RF; Comas-Garcia M; Gopal A; Knobler CM; Gelbart WM
    J Mol Biol; 2014 Mar; 426(5):1050-60. PubMed ID: 24148696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virus-encapsulated DNA origami nanostructures for cellular delivery.
    Mikkilä J; Eskelinen AP; Niemelä EH; Linko V; Frilander MJ; Törmä P; Kostiainen MA
    Nano Lett; 2014; 14(4):2196-200. PubMed ID: 24627955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly secretory expression of recombinant cowpea chlorotic mottle virus capsid proteins in Pichia pastoris and in-vitro encapsulation of ruthenium nanoparticles for catalysis.
    Zhu J; Yang K; Liu A; Lu X; Yang L; Zhao Q
    Protein Expr Purif; 2020 Oct; 174():105679. PubMed ID: 32534017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elucidating the Thermodynamic Driving Forces of Polyanion-Templated Virus-like Particle Assembly.
    Maassen SJ; Huskens J; Cornelissen JJLM
    J Phys Chem B; 2019 Nov; 123(46):9733-9741. PubMed ID: 31661278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.