These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 312286)

  • 1. Hydrogen formation in nearly stoichiometric amounts from glucose by a Rhodopseudomonas sphaeroides mutant.
    Macler BA; Pelroy RA; Bassham JA
    J Bacteriol; 1979 May; 138(2):446-52. PubMed ID: 312286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon allocation in wild-type and Glc+ Rhodobacter sphaeroides under photoheterotrophic conditions.
    Macler BA; Bassham JA
    Appl Environ Microbiol; 1988 Nov; 54(11):2737-41. PubMed ID: 3145710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively.
    Shimizu T; Teramoto H; Inui M
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9739-9749. PubMed ID: 31696284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472
    [No Abstract]   [Full Text] [Related]  

  • 5. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides.
    Paoli GC; Tabita FR
    Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism.
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2022 Jun; 88(12):e0050722. PubMed ID: 35670584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derepressive effect of NH4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides.
    Li X; Liu T; Wu Y; Zhao G; Zhou Z
    Biotechnol Bioeng; 2010 Jul; 106(4):564-72. PubMed ID: 20340141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive effect of H(2) uptake and poly-beta-hydroxybutyrate formation on nitrogenase-mediated H(2) accumulation of Rhodobacter sphaeroides according to light intensity.
    Lee IH; Park JY; Kho DH; Kim MS; Lee JK
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):147-53. PubMed ID: 12382056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells.
    Hillmer P; Gest H
    J Bacteriol; 1977 Feb; 129(2):732-9. PubMed ID: 838686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nitrogenase and hydrogenase activities of the non-sulfur purple bacteria, Rhodopseudomonas spheroides and Rhodopseudomonas capsulata].
    Serebriakova LT; Teslia EA; Gogotov IN; Kondrat'eva EN
    Mikrobiologiia; 1980; 49(3):401-7. PubMed ID: 6995815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathways involved in reductant distribution during photobiological H(2) production by Rhodobacter sphaeroides.
    Kontur WS; Ziegelhoffer EC; Spero MA; Imam S; Noguera DR; Donohue TJ
    Appl Environ Microbiol; 2011 Oct; 77(20):7425-9. PubMed ID: 21856820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides.
    Farmer RM; Tabita FR
    Microbiology (Reading); 2015 Nov; 161(11):2184-91. PubMed ID: 26306848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures.
    Hillmer P; Gest H
    J Bacteriol; 1977 Feb; 129(2):724-31. PubMed ID: 838685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased photoproduction of hydrogen by non-autotrophic mutants of Rhodopseudomonas capsulata.
    Willison JC; Madern D; Vignais PM
    Biochem J; 1984 Apr; 219(2):593-600. PubMed ID: 6146310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V; Kirchner G; Pfennig N
    Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered residues in key proteins influence the expression and activity of the nitrogenase complex in an adaptive CO2 fixation-deficient mutant strain of Rhodobacter sphaeroides.
    Farmer RM; Laguna R; Panescu J; McCoy A; Logsdon B; Zianni M; Moskvin OV; Gomelsky M; Tabita FR
    Microbiology (Reading); 2014 Jan; 160(Pt 1):198-208. PubMed ID: 24126349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides.
    Ipekoğlu EM; Göçmen K; Öz MT; Gürgan M; Yücel M
    J Basic Microbiol; 2017 Mar; 57(3):238-244. PubMed ID: 27902845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate metabolism in Rhodopseudomonas capsulata: enzyme titers, glucose metabolism, and polyglucose polymer synthesis.
    Eidels L; Preiss J
    Arch Biochem Biophys; 1970 Sep; 140(1):75-89. PubMed ID: 4248272
    [No Abstract]   [Full Text] [Related]  

  • 20. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J; Yoshimune K; Komoriya T; Kohno H
    J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.