BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31228772)

  • 1. Experimental comparison of agent-enhanced flushing for the recovery of crude oil from saturated porous media.
    Booth JM; Tick GR; Akyol NH; Greenberg RR; Zhang Y
    J Contam Hydrol; 2019 Oct; 226():103504. PubMed ID: 31228772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.
    Ghosh J; Tick GR
    J Contam Hydrol; 2013 Dec; 155():20-30. PubMed ID: 24113292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pore-scale investigation of heavy crude oil trapping and removal during surfactant-enhanced remediation.
    Ghosh J; Tick GR; Akyol NH; Zhang Y
    J Contam Hydrol; 2019 Jun; 223():103471. PubMed ID: 31014903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-scale dynamics of nanofluid-enhanced NAPL displacement in carbonate rock.
    Qin T; Goual L; Piri M; Hu Z; Wen D
    J Contam Hydrol; 2020 Mar; 230():103598. PubMed ID: 31898982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emulsion-based recovery of a multicomponent petroleum hydrocarbon NAPL using nonionic surfactant formulations.
    Ramsburg CA; Baniahmad P; Muller KA; Robinson AD
    J Contam Hydrol; 2023 Apr; 255():104144. PubMed ID: 36791614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.
    Javanbakht G; Goual L
    J Contam Hydrol; 2016; 185-186():61-73. PubMed ID: 26826983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Etched glass micromodel for laboratory simulation of NAPL recovery mechanisms by surfactant solutions in fractured rock.
    Martel R; Portois C; Robert T; Uyeda M
    J Contam Hydrol; 2019 Dec; 227():103550. PubMed ID: 31493908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation.
    Babaei M; Copty NK
    J Contam Hydrol; 2019 Feb; 221():69-81. PubMed ID: 30691860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory Testing in Support of Surfactant-Alternating-Gas Foam Flood for NAPL Recovery from Shallow Subsurface.
    Stylianou M; Lee JH; Kostarelos K; Voskaridou T
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):744-750. PubMed ID: 30255234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar.
    Hauswirth SC; Miller CT
    J Contam Hydrol; 2014 Oct; 167():44-60. PubMed ID: 25190671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ surfactant/surfactant-nutrient mix-enhanced bioremediation of NAPL (fuel)-contaminated sandy soil aquifers.
    Zoller U; Reznik A
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):392-7. PubMed ID: 17120829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation study of in-situ NAPL remediation treatment by using surfactant and foam processes in a military base South Korea.
    Cepeda-Salgado B; Fleifel H; Lee GS; Kam SI
    J Contam Hydrol; 2022 May; 247():103982. PubMed ID: 35278831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced-solubilization and dissolution of multicomponent DNAPL from homogeneous porous media.
    Tick G; Slavic DR; Akyol NH; Zhang Y
    J Contam Hydrol; 2022 May; 247():103967. PubMed ID: 35247695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-ionic surfactant flushing of pentachlorophenol from NAPL-contaminated soil.
    Park SK; Bielefeldt AR
    Water Res; 2005 Apr; 39(7):1388-96. PubMed ID: 15862339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory-scale experiments and numerical modeling of cosolvent flushing of multi-component NAPLs in saturated porous media.
    Agaoglu B; Scheytt T; Copty NK
    J Contam Hydrol; 2012 Oct; 140-141():80-94. PubMed ID: 23010548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of surfactant-enhanced mass removal and flux reduction in 3D correlated permeability fields using magnetic resonance imaging.
    Zhang C; Werth CJ; Webb AG
    J Contam Hydrol; 2008 Sep; 100(3-4):116-26. PubMed ID: 18676059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: density conversion using a partitioning alcohol.
    Ramsburg CA; Pennell KD
    Environ Sci Technol; 2002 May; 36(9):2082-7. PubMed ID: 12026997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.