These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31228894)

  • 1. Static and dynamic correlation lengths in supercooled polymers.
    Balbuena C; Gianetti MM; Soulé ER
    J Chem Phys; 2019 Jun; 150(23):234508. PubMed ID: 31228894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Looking at the dynamical heterogeneity in a supercooled polymer system through isoconfigurational ensemble.
    Balbuena C; Gianetti MM; Soulé ER
    J Chem Phys; 2018 Sep; 149(9):094506. PubMed ID: 30195298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growing point-to-set length scales in Lennard-Jones glass-forming liquids.
    Li YW; Xu WS; Sun ZY
    J Chem Phys; 2014 Mar; 140(12):124502. PubMed ID: 24697454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the Adam-Gibbs relation hold in simulated supercooled liquids?
    Ozawa M; Scalliet C; Ninarello A; Berthier L
    J Chem Phys; 2019 Aug; 151(8):084504. PubMed ID: 31470721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass Transition in Supercooled Liquids with Medium-Range Crystalline Order.
    Tah I; Sengupta S; Sastry S; Dasgupta C; Karmakar S
    Phys Rev Lett; 2018 Aug; 121(8):085703. PubMed ID: 30192617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of heterogeneity measures and their relation to the glass transition.
    Di X; McKenna GB
    J Chem Phys; 2013 Mar; 138(12):12A530. PubMed ID: 23556781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.
    Starr FW; Douglas JF; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A541. PubMed ID: 23556792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.
    Klameth F; Henritzi P; Vogel M
    J Chem Phys; 2014 Apr; 140(14):144501. PubMed ID: 24735299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts.
    Pan D; Sun ZY
    J Chem Phys; 2018 Dec; 149(23):234904. PubMed ID: 30579312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple length and time scales of dynamic heterogeneities in model glass-forming liquids: a systematic analysis of multi-point and multi-time correlations.
    Kim K; Saito S
    J Chem Phys; 2013 Mar; 138(12):12A506. PubMed ID: 23556757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.
    Qvist J; Schober H; Halle B
    J Chem Phys; 2011 Apr; 134(14):144508. PubMed ID: 21495765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial correlations in the dynamics of glassforming liquids: experimental determination of their temperature dependence.
    Dalle-Ferrier C; Thibierge C; Alba-Simionesco C; Berthier L; Biroli G; Bouchaud JP; Ladieu F; L'Hôte D; Tarjus G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041510. PubMed ID: 17994997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length scales in glass-forming liquids and related systems: a review.
    Karmakar S; Dasgupta C; Sastry S
    Rep Prog Phys; 2016 Jan; 79(1):016601. PubMed ID: 26684508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method to probe the pronounced growth of correlation lengths in active glass-forming liquids using an elongated probe.
    Mutneja A; Karmakar S
    Phys Rev E; 2023 Aug; 108(2):L022601. PubMed ID: 37723727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-diffusion of supercooled o-terphenyl near the glass transition temperature.
    Mapes MK; Swallen SF; Ediger MD
    J Phys Chem B; 2006 Jan; 110(1):507-11. PubMed ID: 16471562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growing length and time scales in glass-forming liquids.
    Karmakar S; Dasgupta C; Sastry S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3675-9. PubMed ID: 19234111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density Scaling of Translational and Rotational Molecular Dynamics in a Simple Ellipsoidal Model near the Glass Transition.
    Liszka K; Grzybowski A; Koperwas K; Paluch M
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.