BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 31229076)

  • 1. Inhibitory effect of epicatechin gallate on protein glycation.
    Wu X; Zhang G; Hu X; Pan J; Liao Y; Ding H
    Food Res Int; 2019 Aug; 122():230-240. PubMed ID: 31229076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media.
    Wu Q; Tang S; Zhang L; Xiao J; Luo Q; Chen Y; Zhou M; Feng N; Wang C
    Food Funct; 2020 Jun; 11(6):5396-5408. PubMed ID: 32469349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of A-type oligomer procyanidins on protein glycation using two glycation models coupled with spectroscopy, chromatography, and molecular docking.
    Zhao L; Jin X; Li Y; Yu Y; He L; Liu R
    Food Res Int; 2022 May; 155():111068. PubMed ID: 35400446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoferulic acid, a new anti-glycation agent, inhibits fructose- and glucose-mediated protein glycation in vitro.
    Meeprom A; Sompong W; Chan CB; Adisakwattana S
    Molecules; 2013 May; 18(6):6439-54. PubMed ID: 23722732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal.
    Shen Y; Xu Z; Sheng Z
    Food Chem; 2017 Feb; 216():153-60. PubMed ID: 27596404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitexin Inhibits Protein Glycation through Structural Protection, Methylglyoxal Trapping, and Alteration of Glycation Site.
    Ni M; Song X; Pan J; Gong D; Zhang G
    J Agric Food Chem; 2021 Mar; 69(8):2462-2476. PubMed ID: 33600185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EGCG attenuates the neurotoxicity of methylglyoxal via regulating MAPK and the downstream signaling pathways and inhibiting advanced glycation end products formation.
    He Y; Yang Z; Pi J; Cai T; Xia Y; Cao X; Liu J
    Food Chem; 2022 Aug; 384():132358. PubMed ID: 35193024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular hybridization based on (-)-epigallocatechin gallate as a new class of antiglycation agents.
    Jeong GH; Park S; Kim SB; Jo C; Kim TH
    Biosci Biotechnol Biochem; 2021 Apr; 85(5):1069-1076. PubMed ID: 33704410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Penta-O-galloyl-β-d-glucose inhibits the formation of advanced glycation end-products (AGEs): A mechanistic investigation.
    Peng J; Liang G; Wen W; Qiu Z; Huang W; Wang Q; Xiao G
    Int J Biol Macromol; 2023 May; 237():124161. PubMed ID: 36965563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of inhibitory mechanism of flavonoids as bovine serum albumin anti-glycation agents.
    Johari A; Moosavi-Movahedi AA; Amanlou M
    Daru; 2014 Dec; 22(1):79. PubMed ID: 25498599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cinnamic acid and its derivatives inhibit fructose-mediated protein glycation.
    Adisakwattana S; Sompong W; Meeprom A; Ngamukote S; Yibchok-Anun S
    Int J Mol Sci; 2012; 13(2):1778-1789. PubMed ID: 22408423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive analysis of the anti-glycation effect of peanut skin extract.
    Zhao L; Zhu X; Yu Y; He L; Li Y; Zhang L; Liu R
    Food Chem; 2021 Nov; 362():130169. PubMed ID: 34102509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring the protective ability of thymoquinone mixture with p-cymene against bovine serum albumin (BSA) glycation: MCR-ALS analysis based on combined spectroscopic and electrochemical methods.
    Benvidi A; Rezaeinasab M; Gharaghani S; Abbasi S
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2465-2474. PubMed ID: 29074084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesized ZnO-NPs from
    Anandan S; Mahadevamurthy M; Ansari MA; Alzohairy MA; Alomary MN; Farha Siraj S; Halugudde Nagaraja S; Chikkamadaiah M; Thimappa Ramachandrappa L; Naguvanahalli Krishnappa HK; Ledesma AE; Nagaraj AK; Urooj A
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31888262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive Capacity of [6]-Shogaol and Epicatechin To Trap Methylglyoxal.
    Huang Q; Wang P; Zhu Y; Lv L; Sang S
    J Agric Food Chem; 2017 Sep; 65(38):8356-8362. PubMed ID: 28866888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms.
    Liu H; Huo X; Wang S; Yin Z
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112360. PubMed ID: 35131714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity.
    Prasanna G; Saraswathi NT
    J Biomol Struct Dyn; 2016 May; 34(5):943-51. PubMed ID: 26325019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Antiglycation and Methylglyoxal Trapping Effect of Peppermint Leaf (
    Fecka I; Bednarska K; Kowalczyk A
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.