BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31229082)

  • 1. Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties.
    Spínola V; Pinto J; Llorent-Martínez EJ; Castilho PC
    Food Res Int; 2019 Aug; 122():283-294. PubMed ID: 31229082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion.
    Pinto J; Spínola V; Llorent-Martínez EJ; Fernández-de Córdova ML; Molina-García L; Castilho PC
    Food Res Int; 2017 Oct; 100(Pt 3):404-410. PubMed ID: 28964363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological properties of Elaeagnus rhamnoides (L.) A. Nelson twig and leaf extracts.
    Skalski B; Kontek B; Lis B; Olas B; Grabarczyk Ł; Stochmal A; Żuchowski J
    BMC Complement Altern Med; 2019 Jun; 19(1):148. PubMed ID: 31238930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach.
    Nazir N; Zahoor M; Nisar M; Khan I; Karim N; Abdel-Halim H; Ali A
    BMC Complement Altern Med; 2018 Dec; 18(1):332. PubMed ID: 30545352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb.
    Nazir N; Zahoor M; Uddin F; Nisar M
    BMC Complement Med Ther; 2021 Feb; 21(1):73. PubMed ID: 33618705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish
    İnan Y; Akyüz S; Kurt-Celep I; Celep E; Yesilada E
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical Constituents, ChEs and Urease Inhibitions, Antiproliferative and Antioxidant Properties of Elaeagnus umbellata Thunb.
    Ozen T; Yenigun S; Altun M; Demirtas I
    Comb Chem High Throughput Screen; 2017; 20(6):559-578. PubMed ID: 28137214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative chemical composition, antioxidant and anticoagulant properties of phenolic fraction (a rich in non-acylated and acylated flavonoids and non-polar compounds) and non-polar fraction from Elaeagnus rhamnoides (L.) A. Nelson fruits.
    Olas B; Żuchowski J; Lis B; Skalski B; Kontek B; Grabarczyk Ł; Stochmal A
    Food Chem; 2018 May; 247():39-45. PubMed ID: 29277226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest.
    Spínola V; Castilho PC
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33916292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models.
    Spínola V; Pinto J; Llorent-Martínez EJ; Tomás H; Castilho PC
    Food Chem Toxicol; 2019 Jan; 123():443-452. PubMed ID: 30408537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts.
    Fazio A; Plastina P; Meijerink J; Witkamp RF; Gabriele B
    Food Chem; 2013 Oct; 140(4):817-24. PubMed ID: 23692771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications.
    Spínola V; Llorent-Martínez EJ; Castilho PC
    Food Res Int; 2019 Feb; 116():1229-1238. PubMed ID: 30716910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant activity of selected wild Canadian prairie fruits.
    Klensporf-Pawlik D; Przybylski R
    Acta Sci Pol Technol Aliment; 2015; 14(4):357-366. PubMed ID: 28068041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Platelet Properties of Phenolic Extracts from the Leaves and Twigs of
    Skalski B; Kontek B; Rolnik A; Olas B; Stochmal A; Żuchowski J
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31597284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract.
    Costa JR; Amorim M; Vilas-Boas A; Tonon RV; Cabral LMC; Pastrana L; Pintado M
    Food Funct; 2019 Apr; 10(4):1856-1869. PubMed ID: 30950465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis.
    Benevides Bahiense J; Marques FM; Figueira MM; Vargas TS; Kondratyuk TP; Endringer DC; Scherer R; Fronza M
    Pharm Biol; 2017 Dec; 55(1):991-997. PubMed ID: 28166708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic and Nonpolar Fractions of
    Różalska B; Sadowska B; Żuchowski J; Więckowska-Szakiel M; Budzyńska A; Wójcik U; Stochmal A
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29933557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenolic compounds, antioxidant activity, antiproliferative activity and bioaccessibility of Sea buckthorn (Hippophaë rhamnoides L.) berries as affected by in vitro digestion.
    Guo R; Chang X; Guo X; Brennan CS; Li T; Fu X; Liu RH
    Food Funct; 2017 Nov; 8(11):4229-4240. PubMed ID: 29046908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts.
    Duymuş HG; Göger F; Başer KH
    Food Chem; 2014 Jul; 155():112-9. PubMed ID: 24594162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fruit Phenolic Composition of Different Elderberry Species and Hybrids.
    Mikulic-Petkovsek M; Ivancic A; Todorovic B; Veberic R; Stampar F
    J Food Sci; 2015 Oct; 80(10):C2180-90. PubMed ID: 26409176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.