BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31229094)

  • 21. Alternatives to Trichoderma reesei in biofuel production.
    Gusakov AV
    Trends Biotechnol; 2011 Sep; 29(9):419-25. PubMed ID: 21612834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin.
    de Castro AM; Pedro KC; da Cruz JC; Ferreira MC; Leite SG; Pereira N
    Appl Biochem Biotechnol; 2010 Nov; 162(7):2111-22. PubMed ID: 20455032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: Optimization and synergism studies.
    Méndez Arias J; Modesto LF; Polikarpov I; Pereira N
    Biotechnol Prog; 2016 Sep; 32(5):1222-1229. PubMed ID: 27254751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.
    Shida Y; Furukawa T; Ogasawara W
    Biosci Biotechnol Biochem; 2016 Sep; 80(9):1712-29. PubMed ID: 27075508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Influence of Temperature and Nitrogen Source on Cellulolytic Potential of Microbiota Isolated from Natural Environment.
    Wita A; Białas W; Wilk R; Szychowska K; Czaczyk K
    Pol J Microbiol; 2019; 68(1):105-114. PubMed ID: 31050258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J; Kricka W; James TC; Bond U
    J Appl Microbiol; 2014 Jul; 117(1):96-108. PubMed ID: 24666670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates.
    Peciulyte A; Anasontzis GE; Karlström K; Larsson PT; Olsson L
    Fungal Genet Biol; 2014 Nov; 72():64-72. PubMed ID: 25093270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.
    Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK
    BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic degradation of steam-pretreated Lespedeza stalk (Lespedeza crytobotrya) by cellulosic-substrate induced cellulases.
    Feng Y; Liu HQ; Xu F; Jiang JX
    Bioprocess Biosyst Eng; 2011 Mar; 34(3):357-65. PubMed ID: 21153422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.
    Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K
    Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellulose hydrolysis and binding with Trichoderma reesei Cel5A and Cel7A and their core domains in ionic liquid solutions.
    Wahlström R; Rahikainen J; Kruus K; Suurnäkki A
    Biotechnol Bioeng; 2014 Apr; 111(4):726-33. PubMed ID: 24258388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [High arsenic-tolerant fungi: their isolation and tolerant ability].
    Su SM; Zeng XB; Jiang XL; Bai LY; Li LF; Zhang YR
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3225-30. PubMed ID: 21443013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in submicrometer structure of enzymatically hydrolyzed microcrystalline cellulose.
    Penttilä PA; Várnai A; Leppänen K; Peura M; Kallonen A; Jääskeläinen P; Lucenius J; Ruokolainen J; Siika-Aho M; Viikari L; Serimaa R
    Biomacromolecules; 2010 Apr; 11(4):1111-7. PubMed ID: 20329744
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on cellulases of some cellulose-degrading soil fungi.
    Helal GA; Khalil RR; Galal YG; Soliman SM; Abd Elkader RS
    Arch Microbiol; 2021 Dec; 204(1):65. PubMed ID: 34940920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal solid state culture of palm kernel cake.
    Iluyemi FB; Hanafi MM; Radziah O; Kamarudin MS
    Bioresour Technol; 2006 Feb; 97(3):477-82. PubMed ID: 16216731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of Cellulose Degrading Fungi from Decaying Banana Pseudostem and
    Legodi LM; La Grange D; van Rensburg ELJ; Ncube I
    Enzyme Res; 2019; 2019():1390890. PubMed ID: 31428468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus.
    Strakowska J; Błaszczyk L; Chełkowski J
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S2-13. PubMed ID: 24532413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Cellulolytic activity of Fenellia flavipes and Fusarium oxysporum strains].
    Chepchak TP; Olishevskaia SV; Kurchenko IN
    Mikrobiol Z; 2013; 75(6):51-8. PubMed ID: 24450186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superior cellulolytic activity of Trichoderma guizhouense on raw wheat straw.
    Grujić M; Dojnov B; Potočnik I; Atanasova L; Duduk B; Srebotnik E; Druzhinina IS; Kubicek CP; Vujčić Z
    World J Microbiol Biotechnol; 2019 Nov; 35(12):194. PubMed ID: 31776792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.