These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 31229094)
41. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Dai Z; Aryal UK; Shukla A; Qian WJ; Smith RD; Magnuson JK; Adney WS; Beckham GT; Brunecky R; Himmel ME; Decker SR; Ju X; Zhang X; Baker SE Fungal Genet Biol; 2013 Dec; 61():120-32. PubMed ID: 24076077 [TBL] [Abstract][Full Text] [Related]
42. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Stricker AR; Mach RL; de Graaff LH Appl Microbiol Biotechnol; 2008 Feb; 78(2):211-20. PubMed ID: 18197406 [TBL] [Abstract][Full Text] [Related]
43. Mechanistic modeling of enzymatic hydrolysis of cellulose integrating substrate morphology and cocktail composition. Huron M; Hudebine D; Lopes Ferreira N; Lachenal D Biotechnol Bioeng; 2016 May; 113(5):1011-23. PubMed ID: 26524470 [TBL] [Abstract][Full Text] [Related]
44. Biomass sorghum as a novel substrate in solid-state fermentation for the production of hemicellulases and cellulases by Aspergillus niger and A. fumigatus. Dias LM; Dos Santos BV; Albuquerque CJB; Baeta BEL; Pasquini D; Baffi MA J Appl Microbiol; 2018 Mar; 124(3):708-718. PubMed ID: 29253315 [TBL] [Abstract][Full Text] [Related]
45. Polyploid formation between Aspergillus niger and Trichoderma viride for enhanced citric acid production from cellulose. Watanapokasin R; Sawasjirakij N; Usami S; Kirimura K Appl Biochem Biotechnol; 2007 Nov; 143(2):176-86. PubMed ID: 18025606 [TBL] [Abstract][Full Text] [Related]
46. Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Tani S; Kawaguchi T; Kobayashi T Appl Microbiol Biotechnol; 2014 Jun; 98(11):4829-37. PubMed ID: 24723293 [TBL] [Abstract][Full Text] [Related]
48. Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor. Liu YK; Chen WC; Huang YC; Chang YK; Chu IM; Tsai SL; Wei YH J Biosci Bioeng; 2017 Aug; 124(2):184-188. PubMed ID: 28325660 [TBL] [Abstract][Full Text] [Related]
49. Design and composition of synthetic fungal-bacterial microbial consortia that improve lignocellulolytic enzyme activity. Hu J; Xue Y; Guo H; Gao MT; Li J; Zhang S; Tsang YF Bioresour Technol; 2017 Mar; 227():247-255. PubMed ID: 28039824 [TBL] [Abstract][Full Text] [Related]
50. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Pirota RD; Baleeiro FC; Farinas CS Biotechnol Prog; 2013; 29(6):1430-40. PubMed ID: 24115639 [TBL] [Abstract][Full Text] [Related]
51. [Screening of three straw-cellulose degrading microorganism]. Wang H; Fan B Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):870-5. PubMed ID: 20815232 [TBL] [Abstract][Full Text] [Related]
52. Product inhibition of five Hypocrea jecorina cellulases. Murphy L; Bohlin C; Baumann MJ; Olsen SN; Sørensen TH; Anderson L; Borch K; Westh P Enzyme Microb Technol; 2013 Mar; 52(3):163-9. PubMed ID: 23410927 [TBL] [Abstract][Full Text] [Related]
53. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
54. Millipede gut-derived microbes as a potential source of cellulolytic enzymes. Koubová A; Lorenc F; Horváthová T; Chroňáková A; Šustr V World J Microbiol Biotechnol; 2023 Apr; 39(7):169. PubMed ID: 37186294 [TBL] [Abstract][Full Text] [Related]
55. Enzyme production by the mixed fungal culture with nano-shear pretreated biomass and lignocellulose hydrolysis. Lu J; Weerasiri RR; Liu Y; Wang W; Ji S; Lee I Biotechnol Bioeng; 2013 Aug; 110(8):2123-30. PubMed ID: 23456729 [TBL] [Abstract][Full Text] [Related]
56. [Comparative study of the growth of Trichoderma reesei and Penicillium occitanie]. Mosrati R; Ellouz S; Ghoul M Arch Inst Pasteur Tunis; 1988; 65(3-4):279-91. PubMed ID: 3250348 [TBL] [Abstract][Full Text] [Related]
57. Cellulase formation by species of Trichoderma sect. Longibrachiatum and of Hypocrea spp. with anamorphs referable to Trichoderma sect. Longibrachiatum. Kubicek CP; Bölzlbauer UM; Kovacs W; Mach RL; Kuhls K; Lieckfeldt E; Börner T; Samuels GJ Fungal Genet Biol; 1996 Jun; 20(2):105-14. PubMed ID: 8810515 [TBL] [Abstract][Full Text] [Related]
58. A novel microplate-based screening strategy to assess the cellulolytic potential of Trichoderma strains. Cianchetta S; Galletti S; Burzi PL; Cerato C Biotechnol Bioeng; 2010 Oct; 107(3):461-8. PubMed ID: 20517987 [TBL] [Abstract][Full Text] [Related]
59. Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources. Chen X; Luo Y; Yu H; Sun Y; Wu H; Song S; Hu S; Dong Z J Biotechnol; 2014 Mar; 173():59-64. PubMed ID: 24445169 [TBL] [Abstract][Full Text] [Related]
60. The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates. Hu J; Gourlay K; Arantes V; Van Dyk JS; Pribowo A; Saddler JN ChemSusChem; 2015 Mar; 8(5):901-7. PubMed ID: 25607348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]