These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31229104)
1. Protective effects of bovine serum albumin on blueberry anthocyanins under illumination conditions and their mechanism analysis. Lang Y; Li E; Meng X; Tian J; Ran X; Zhang Y; Zang Z; Wang W; Li B Food Res Int; 2019 Aug; 122():487-495. PubMed ID: 31229104 [TBL] [Abstract][Full Text] [Related]
2. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Zang Z; Chou S; Tian J; Lang Y; Shen Y; Ran X; Gao N; Li B Food Chem; 2021 Jan; 336():127700. PubMed ID: 32768906 [TBL] [Abstract][Full Text] [Related]
3. Blueberry pectin and increased anthocyanins stability under in vitro digestion. Koh J; Xu Z; Wicker L Food Chem; 2020 Jan; 302():125343. PubMed ID: 31430630 [TBL] [Abstract][Full Text] [Related]
4. Effect of triazole-tryptophan hybrid on the conformation stability of bovine serum albumin. Aneja B; Kumari M; Azam A; Kumar A; Abid M; Patel R Luminescence; 2018 May; 33(3):464-474. PubMed ID: 29314579 [TBL] [Abstract][Full Text] [Related]
5. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin: spectroscopic and molecular docking methods. Shi JH; Wang J; Zhu YY; Chen J Luminescence; 2014 Aug; 29(5):522-30. PubMed ID: 24123897 [TBL] [Abstract][Full Text] [Related]
6. Combined spectroscopies and molecular docking approach to characterizing the binding interaction of enalapril with bovine serum albumin. Pan DQ; Jiang M; Liu TT; Wang Q; Shi JH Luminescence; 2017 Jun; 32(4):481-490. PubMed ID: 27550396 [TBL] [Abstract][Full Text] [Related]
7. Properties and stability of blueberry anthocyanin--bovine serum albumin nanoparticles. Chen J; Tao X; Zhang M; Sun A; Zhao L J Sci Food Agric; 2014 Jul; 94(9):1781-6. PubMed ID: 24302118 [TBL] [Abstract][Full Text] [Related]
8. Exploring the binding mechanism of 5-hydroxy-3',4',7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach. Sudha A; Srinivasan P; Thamilarasan V; Sengottuvelan N Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():170-181. PubMed ID: 26773261 [TBL] [Abstract][Full Text] [Related]
9. Effect of bovine serum albumin on the stability and antioxidant activity of blueberry anthocyanins during processing and in vitro simulated digestion. Zang Z; Chou S; Si X; Cui H; Tan H; Ding Y; Liu Z; Wang H; Lang Y; Tang S; Li B; Tian J Food Chem; 2022 Mar; 373(Pt B):131496. PubMed ID: 34836668 [TBL] [Abstract][Full Text] [Related]
10. Insights into the interaction between the kusaginin and bovine serum albumin: Multi-spectroscopic techniques and computational approaches. Huang F; Chen C J Mol Recognit; 2023 Mar; 36(3):e3003. PubMed ID: 36519271 [TBL] [Abstract][Full Text] [Related]
11. Underlying molecular interaction of bovine serum albumin and linezolid: a biophysical outlook. Roy A; Seal P; Sikdar J; Banerjee S; Haldar R J Biomol Struct Dyn; 2018 Feb; 36(2):387-397. PubMed ID: 28049370 [TBL] [Abstract][Full Text] [Related]
12. Probing the binding of phenolic aldehyde vanillin with bovine serum albumin: Evidence from spectroscopic and docking approach. Siddiqui GA; Siddiqi MK; Khan RH; Naeem A Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():40-47. PubMed ID: 29859491 [TBL] [Abstract][Full Text] [Related]
13. Investigation on the interaction between triclosan and bovine serum albumin by spectroscopic methods. Gu J; Zheng S; Zhao H; Sun T J Environ Sci Health B; 2020; 55(1):52-59. PubMed ID: 31453744 [TBL] [Abstract][Full Text] [Related]
14. Multispectroscopic exploration and molecular docking analysis on interaction of eriocitrin with bovine serum albumin. Cao X; Yang Z; He Y; Xia Y; He Y; Liu J J Mol Recognit; 2019 Jul; 32(7):e2779. PubMed ID: 30701606 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the interaction of food colorant Sudan III with bovine serum albumin using spectroscopic and molecular docking methods. Bai J; Ma X; Sun X J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(6):669-676. PubMed ID: 32073347 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic study on the interaction between mononaphthalimide spermidine (MINS) and bovine serum albumin (BSA). Tian Z; Zang F; Luo W; Zhao Z; Wang Y; Xu X; Wang C J Photochem Photobiol B; 2015 Jan; 142():103-9. PubMed ID: 25528194 [TBL] [Abstract][Full Text] [Related]
17. Interaction of piroxicam with bovine serum albumin investigated by spectroscopic, calorimetric and computational molecular methods. Aricov L; Angelescu DG; Băran A; Leontieş AR; Popa VT; Precupaş A; Sandu R; Stîngă G; Anghel DF J Biomol Struct Dyn; 2020 Jun; 38(9):2659-2671. PubMed ID: 31315508 [TBL] [Abstract][Full Text] [Related]
18. [Binding interaction of harpagoside and bovine serum albumin: spectroscopic methodologies and molecular docking]. Cao TW; Huang WB; Shi JW; He W Zhongguo Zhong Yao Za Zhi; 2018 Mar; 43(5):993-1000. PubMed ID: 29676099 [TBL] [Abstract][Full Text] [Related]
19. Combined multispectroscopic and molecular docking investigation on the interaction between delphinidin-3-O-glucoside and bovine serum albumin. Zuo H; Tang L; Li S; Huang J Luminescence; 2015 Feb; 30(1):110-7. PubMed ID: 24891226 [TBL] [Abstract][Full Text] [Related]
20. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu Yousuf I; Bashir M; Arjmand F; Tabassum S J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]