These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 31229105)

  • 21. Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines during Simulated Digestion.
    Tarko T; Duda-Chodak A; Soszka A
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine.
    Gonçalves B; Falco V; Moutinho-Pereira J; Bacelar E; Peixoto F; Correia C
    J Agric Food Chem; 2009 Jan; 57(1):265-73. PubMed ID: 19072054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wine industry by-product: Full polyphenolic characterization of grape stalks.
    Teixeira N; Mateus N; de Freitas V; Oliveira J
    Food Chem; 2018 Dec; 268():110-117. PubMed ID: 30064737
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenolic characteristics acquired by berry skins of Vitis vinifera cv. Tempranillo in response to close-to-ambient solar ultraviolet radiation are mostly reflected in the resulting wines.
    Del-Castillo-Alonso MÁ; Monforte L; Tomás-Las-Heras R; Martínez-Abaigar J; Núñez-Olivera E
    J Sci Food Agric; 2020 Jan; 100(1):401-409. PubMed ID: 31637723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of fungicide residues and in vitro gastrointestinal digestion on total antioxidant capacity and phenolic fraction of Graciano and Tempranillo red wines.
    Camara MA; Martínez G; Cermeño S; Zafrilla P; Oliva J
    J Environ Sci Health B; 2019; 54(12):942-947. PubMed ID: 31407614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys.
    Seraglio SKT; Valese AC; Daguer H; Bergamo G; Azevedo MS; Nehring P; Gonzaga LV; Fett R; Costa ACO
    Food Res Int; 2017 Sep; 99(Pt 1):670-678. PubMed ID: 28784530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace.
    Wang S; Amigo-Benavent M; Mateos R; Bravo L; Sarriá B
    Int J Food Sci Nutr; 2017 Mar; 68(2):188-200. PubMed ID: 27609024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of (poly)phenolic compounds and antioxidant properties of pomace extracts from kiwi and grape juice.
    Zhu M; Huang Y; Wang Y; Shi T; Zhang L; Chen Y; Xie M
    Food Chem; 2019 Jan; 271():425-432. PubMed ID: 30236697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Antioxidant and antiradical properties of red grape wines].
    Ageeva NM; Markosov VA; Muzychenko GF; Bessonov VV; Khanferyan RA
    Vopr Pitan; 2015; 84(2):63-7. PubMed ID: 26841558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of bioactive compounds and their in vitro bioaccessibility in whole-wheat flour pasta.
    Podio NS; Baroni MV; Pérez GT; Wunderlin DA
    Food Chem; 2019 Sep; 293():408-417. PubMed ID: 31151628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-fermentation of red grapes and white pomace: A natural and economical process to modulate hybrid wine composition.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2018 Mar; 242():481-490. PubMed ID: 29037718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenolic Characterization of a Purple Maize (
    Rodriguez MD; Monsierra L; Mansilla PS; Pérez GT; de Pascual-Teresa S
    J Agric Food Chem; 2024 Mar; 72(12):6327-6338. PubMed ID: 38484116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour.
    Ross CF; Hoye C; Fernandez-Plotka VC
    J Food Sci; 2011 Aug; 76(6):C884-90. PubMed ID: 22417486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion.
    Lucas-González R; Viuda-Martos M; Pérez Álvarez JA; Fernández-López J
    Food Chem; 2018 Aug; 256():252-258. PubMed ID: 29606446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antioxidant activity and phenolic compounds in organic red wine using different winemaking techniques.
    Mulero J; Zafrilla P; Cayuela JM; Martínez-Cachá A; Pardo F
    J Food Sci; 2011 Apr; 76(3):C436-40. PubMed ID: 21535811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings.
    Del Pino-García R; González-SanJosé ML; Rivero-Pérez MD; García-Lomillo J; Muñiz P
    Food Chem; 2017 Apr; 221():1723-1732. PubMed ID: 27979153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A combined analytical-chemometric approach for the in vitro determination of polyphenol bioaccessibility by simulated gastrointestinal digestion.
    Gómez-Mejía E; Rosales-Conrado N; León-González ME; Valverde A; Madrid Y
    Anal Bioanal Chem; 2022 Mar; 414(8):2739-2755. PubMed ID: 35112149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices.
    Tassoni A; Tango N; Ferri M
    Food Chem; 2013 Aug; 139(1-4):405-13. PubMed ID: 23561124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent applications of grape polyphenols in foods, beverages and supplements.
    Gollücke AP
    Recent Pat Food Nutr Agric; 2010 Jun; 2(2):105-9. PubMed ID: 20653555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wine by-products: phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties.
    Ky I; Lorrain B; Kolbas N; Crozier A; Teissedre PL
    Molecules; 2014 Jan; 19(1):482-506. PubMed ID: 24451245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.