These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31229384)

  • 1. A general multi-objective topology optimization methodology developed for customized design of pelvic prostheses.
    Iqbal T; Wang L; Li D; Dong E; Fan H; Fu J; Hu C
    Med Eng Phys; 2019 Jul; 69():8-16. PubMed ID: 31229384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of finite element model for customized prostheses design for patient with pelvic bone tumor.
    Iqbal T; Shi L; Wang L; Liu Y; Li D; Qin M; Jin Z
    Proc Inst Mech Eng H; 2017 Jun; 231(6):525-533. PubMed ID: 28639517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological design and biomechanical evaluation for 3D printed multi-segment artificial vertebral implants.
    Kang J; Dong E; Li X; Guo Z; Shi L; Li D; Wang L
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112250. PubMed ID: 34225889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Design and finite element analysis of customized pelvic prosthesis].
    Guo PN; Zhang ZY; Gao YD
    Zhongguo Gu Shang; 2019 Jun; 32(6):564-568. PubMed ID: 31277543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A customized fixation plate with novel structure designed by topological optimization for mandibular angle fracture based on finite element analysis.
    Liu YF; Fan YY; Jiang XF; Baur DA
    Biomed Eng Online; 2017 Nov; 16(1):131. PubMed ID: 29141673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology optimization of fixed complete denture framework.
    Park J; Lee D; Sutradhar A
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3193. PubMed ID: 30815988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of screw fixation type on a modular hemi-pelvic prosthesis: a 3-D finite element model.
    Hao Z; Wan C; Gao X; Ji T; Wang H
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):125-8. PubMed ID: 23244444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses.
    Kang J; Wang L; Yang C; Wang L; Yi C; He J; Li D
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1083-1092. PubMed ID: 29730771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method.
    Sutradhar A; Park J; Carrau D; Nguyen TH; Miller MJ; Paulino GH
    Med Biol Eng Comput; 2016 Jul; 54(7):1123-35. PubMed ID: 26660897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Finite element analysis and static biomechanics of pelvic after modular hemipelvic prosthesis reconstruction].
    Feng P; Lian SH; Duan H; Min L; Zhou Y; Liu Z; Tu CQ
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2012 Mar; 43(2):206-9. PubMed ID: 22650032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Two-Scale Multi-Resolution Topologically Optimized Multi-Material Design of 3D Printed Craniofacial Bone Implants.
    Park J; Zobaer T; Sutradhar A
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33498498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.
    Saravana Kumar G; George SP
    Proc Inst Mech Eng H; 2017 Feb; 231(2):149-159. PubMed ID: 28056711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On optimization of a composite bone plate using the selective stress shielding approach.
    Samiezadeh S; Tavakkoli Avval P; Fawaz Z; Bougherara H
    J Mech Behav Biomed Mater; 2015 Feb; 42():138-53. PubMed ID: 25482217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale topology optimization of pelvic bone for combined walking and running gait cycles.
    Rajaraman S; Rakshit S
    Comput Methods Biomech Biomed Engin; 2024 May; 27(6):796-812. PubMed ID: 37129885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction.
    Er MS; Eroglu M; Verim O; Altinel L
    Int Orthop; 2013 Oct; 37(10):2097-8. PubMed ID: 23797456
    [No Abstract]   [Full Text] [Related]  

  • 16. Finite element analysis and design of an interspinous device using topology optimization.
    Guo LX; Yin JY
    Med Biol Eng Comput; 2019 Jan; 57(1):89-98. PubMed ID: 29981052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro experimental and numerical study on biomechanics and stability of a novel adjustable hemipelvic prosthesis.
    Liu D; Jiang J; Wang L; Liu J; Jin Z; Gao L; Hua Y; Cai Z; Hua Z
    J Mech Behav Biomed Mater; 2019 Feb; 90():626-634. PubMed ID: 30500700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.
    Xiao D; Yang Y; Su X; Wang D; Sun J
    Biomed Mater Eng; 2013; 23(5):433-45. PubMed ID: 23988713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection.
    Wong KC; Kumta SM; Geel NV; Demol J
    Comput Aided Surg; 2015; 20(1):14-23. PubMed ID: 26290317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The advances of topology optimization techniques in orthopedic implants: A review.
    Wu N; Li S; Zhang B; Wang C; Chen B; Han Q; Wang J
    Med Biol Eng Comput; 2021 Sep; 59(9):1673-1689. PubMed ID: 34363576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.