These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31229385)

  • 1. Development and validation of a semi-automatic landmark extraction method for mesh morphing.
    Wu J; Cai M; Li J; Cao L; Xu L; Li N; Hu J
    Med Eng Phys; 2019 Aug; 70():62-71. PubMed ID: 31229385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
    O'Reilly MA; Whyne CM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1876-81. PubMed ID: 18670341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-specific rib finite element models with material data derived from coupon tests under bending loading.
    Yates KM; Agnew AM; Albert DL; Kemper AR; Untaroiu CD
    J Mech Behav Biomed Mater; 2021 Apr; 116():104358. PubMed ID: 33610029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphing the feature-based multi-blocks of normative/healthy vertebral geometries to scoliosis vertebral geometries: development of personalized finite element models.
    Hadagali P; Peters JR; Balasubramanian S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):297-324. PubMed ID: 29528253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.
    Yates KM; Untaroiu CD
    J Biomech; 2018 Jun; 74():50-56. PubMed ID: 29699822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast methodology for generating skeletal FEM with detailed human geometric features based on CPD and RBF algorithms.
    Yuan Q; Jiang B; Zhu X; Hu J; Wang Y; Chou CC; Xu S
    Sci Rep; 2023 May; 13(1):8864. PubMed ID: 37258627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-automatic method of generating subject-specific pediatric head finite element models for impact dynamic responses to head injury.
    Li Z; Han X; Ge H; Ma C
    J Mech Behav Biomed Mater; 2016 Jul; 60():557-567. PubMed ID: 27058003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images.
    Gupta A; Kharbanda OP; Sardana V; Balachandran R; Sardana HK
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1737-52. PubMed ID: 25847662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated method to morph finite element whole-body human models with a wide range of stature and body shape for both men and women.
    Zhang K; Cao L; Fanta A; Reed MP; Neal M; Wang JT; Lin CH; Hu J
    J Biomech; 2017 Jul; 60():253-260. PubMed ID: 28668185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):904-13. PubMed ID: 25099570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric sensitivity of patient-specific finite element models of the spine to variability in user-selected anatomical landmarks.
    Little JP; Adam CJ
    Comput Methods Biomech Biomed Engin; 2015; 18(6):676-88. PubMed ID: 24261987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):104-13. PubMed ID: 23293071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal crash simulations using parametric human models representing a diverse population.
    Hu J; Zhang K; Reed MP; Wang JT; Neal M; Lin CH
    Traffic Inj Prev; 2019; 20(sup1):S97-S105. PubMed ID: 31381451
    [No Abstract]   [Full Text] [Related]  

  • 20. Age- and sex-specific thorax finite element model development and simulation.
    Schoell SL; Weaver AA; Vavalle NA; Stitzel JD
    Traffic Inj Prev; 2015; 16 Suppl 1():S57-65. PubMed ID: 26027976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.